Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 107(9): 2792-2798, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36856644

RESUMO

Field trials were conducted to assess the benefit of combining a transgenic soybean cyst nematode (SCN) resistance trait, Cry14Ab-1 expressed by the event GMB151, with the native resistance allele rhg1b from PI 88788. The GMB151 event and rhg1b were crossed into common genetic backgrounds and segregated out to create four genetically related lines within each background. The lines created contained both native and transgenic resistance (rhg1b + GMB151), only native resistance (rhg1b alone), only transgenic resistance (GMB151 alone), or neither resistance type (susceptible). The benefit of GMB151 and rhg1b for SCN management was evaluated by measuring SCN control and yield protection. Soybean cyst nematode control was assessed by counting the number of females and cysts on roots early in the season and measuring the change in SCN egg population density over the entire season. The GMB151 transgenic event and the native resistance allele rhg1b both reduced early season SCN reproduction and contributed to significantly higher soybean yield. Compared to susceptible lines, the rhg1b allele improved yield by 33%, while GMB151 improved yield by 13%. Combining the GMB151 event and rhg1b allele resulted in greater SCN control and yield improvement than either provided alone. The combination of GMB151 and rhg1b reduced season-long SCN reproduction by 50% and resulted in 44% greater yield than the susceptible lines. Soybean cyst nematode virulence to rhg1b continues to increase due to the continuous planting of PI 88788-derived resistant cultivars. Pyramiding GMB151 with rhg1b provides a new management option to improve SCN control and soybean yield.


Assuntos
Cistos , Nematoides , Animais , Feminino , Glycine max/genética , Fenótipo
2.
Nat Commun ; 12(1): 3380, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099714

RESUMO

Plant-parasitic nematodes (PPNs) are economically important pests of agricultural crops, and soybean cyst nematode (SCN) in particular is responsible for a large amount of damage to soybean. The need for new solutions for controlling SCN is becoming increasingly urgent, due to the slow decline in effectiveness of the widely used native soybean resistance derived from genetic line PI 88788. Thus, developing transgenic traits for controlling SCN is of great interest. Here, we report a Bacillus thuringiensis delta-endotoxin, Cry14Ab, that controls SCN in transgenic soybean. Experiments in C. elegans suggest the mechanism by which the protein controls nematodes involves damaging the intestine, similar to the mechanism of Cry proteins used to control insects. Plants expressing Cry14Ab show a significant reduction in cyst numbers compared to control plants 30 days after infestation. Field trials also show a reduction in SCN egg counts compared with control plants, demonstrating that this protein has excellent potential to control PPNs in soybean.


Assuntos
Toxinas de Bacillus thuringiensis/genética , Produtos Agrícolas/parasitologia , Resistência à Doença/genética , Endotoxinas/genética , Glycine max/parasitologia , Proteínas Hemolisinas/genética , Tylenchoidea/patogenicidade , Animais , Bacillus thuringiensis/genética , Toxinas de Bacillus thuringiensis/metabolismo , Bioensaio , Caenorhabditis elegans , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Endotoxinas/metabolismo , Feminino , Engenharia Genética , Proteínas Hemolisinas/metabolismo , Melhoramento Vegetal/métodos , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/parasitologia , Glycine max/genética , Glycine max/metabolismo , Tylenchoidea/isolamento & purificação
3.
Plant Dis ; 102(6): 1093-1100, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30673444

RESUMO

A meta-analytic approach was used to summarize data on the effects of fluopyram-amended seed treatment on sudden death syndrome (SDS) and yield of soybean (Glycine max L.) in over 200 field trials conducted in 12 U.S. states and Ontario, Canada from 2013 to 2015. In those trials, two treatments-the commercial base (CB), and CB plus fluopyram (CBF)-were tested, and all disease and yield data were combined to conduct a random-effects and mixed-effects meta-analysis (test of moderators) to estimate percent control and yield response relative to CB. Overall, a 35% reduction in foliar disease and 295 kg/ha (7.6%) increase in yield were estimated for CBF relative to CB. Sowing date and geographic region affected both estimates. The variation in yield response was explained partially by disease severity (19%), geographic region (8%), and sowing date (10%) but not by the resistance level of the cultivar. The probability of not offsetting the cost of fluopyram was estimated on a range of grain prices and treatment cost combinations. There was a high probability (>80%) of yield gains when disease level was high in any cost-price combinations tested but very low when the foliar symptoms of the disease were absent.


Assuntos
Benzamidas/farmacologia , Fungicidas Industriais/farmacologia , Glycine max/microbiologia , Piridinas/farmacologia , Sementes/microbiologia , Ontário , Doenças das Plantas , Estados Unidos
4.
PLoS One ; 10(12): e0145660, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26684003

RESUMO

The soybean aphid (Aphis glycines Matsumura) is one of the most important insect pests of soybeans in the North-central region of the US. It has been hypothesized that aphids avoid effective defenses by inhibition of jasmonate-regulated plant responses. Given the role fatty acids play in jasmonate-induced plant defenses, we analyzed the fatty acid profile of soybean leaves and seeds from aphid-infested plants. Aphid infestation reduced levels of polyunsaturated fatty acids in leaves with a concomitant increase in palmitic acid. In seeds, a reduction in polyunsaturated fatty acids was associated with an increase in stearic acid and oleic acid. Soybean plants challenged with the brown stem rot fungus or with soybean cyst nematodes did not present changes in fatty acid levels in leaves or seeds, indicating that the changes induced by aphids are not a general response to pests. One of the polyunsaturated fatty acids, linolenic acid, is the precursor of jasmonate; thus, these changes in fatty acid metabolism may be examples of "metabolic hijacking" by the aphid to avoid the induction of effective defenses. Based on the changes in fatty acid levels observed in seeds and leaves, we hypothesize that aphids potentially induce interference in the fatty acid desaturation pathway, likely reducing FAD2 and FAD6 activity that leads to a reduction in polyunsaturated fatty acids. Our data support the idea that aphids block jasmonate-dependent defenses by reduction of the hormone precursor.


Assuntos
Afídeos/fisiologia , Ácidos Graxos/metabolismo , Glycine max/parasitologia , Animais , Interações Hospedeiro-Parasita , Metabolismo dos Lipídeos , Nematoides/fisiologia , Doenças das Plantas/parasitologia , Folhas de Planta/metabolismo , Folhas de Planta/parasitologia , Glycine max/metabolismo
5.
PLoS One ; 10(9): e0138252, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26372106

RESUMO

Sustainable use of insect resistance in crops require insect resistance management plans that may include a refuge to limit the spread of virulence to this resistance. However, without a loss of fitness associated with virulence, a refuge may not prevent virulence from becoming fixed within a population of parthenogenetically reproducing insects like aphids. Aphid-resistance in soybeans (i.e., Rag genes) prevent outbreaks of soybean aphid (Aphis glycines), yet four biotypes defined by their capacity to survive on aphid-resistant soybeans (e.g., biotype-2 survives on Rag1 soybean) are found in North America. Although fitness costs are reported for biotype-3 on aphid susceptible and Rag1 soybean, it is not clear if virulence to aphid resistance in general is associated with a decrease in fitness on aphid susceptible soybeans. In laboratory assays, we measured fitness costs for biotype 2, 3 and 4 on an aphid-susceptible soybean cultivar. In addition, we also observed negative cross-resistance for biotype-2 on Rag3, and biotype-3 on Rag1 soybean. We utilized a simple deterministic, single-locus, four compartment genetic model to account for the impact of these findings on the frequency of virulence alleles. When a refuge of aphid susceptible was included within this model, fitness costs and negative cross-resistance delayed the increase of virulence alleles when virulence was inherited recessively or additively. If virulence were inherited additively, fitness costs decreased the frequency of virulence. Combined, these results suggest that a refuge may prevent virulent A. glycines biotypes from overcoming Rag genes if this aphid-resistance were used commercially in North America.


Assuntos
Afídeos/patogenicidade , Glycine max/genética , Glycine max/fisiologia , Animais , Modelos Genéticos , Fatores de Tempo
6.
PLoS One ; 9(1): e86415, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24466080

RESUMO

Heterodera glycines is a cyst nematode that causes significant lost soybean yield in the U.S. Recent studies observed the aphid Aphis glycines and H. glycines interacting via their shared host, soybean, Glycine max. A greenhouse experiment was conducted to discern the effect of A. glycines feeding on H. glycines reproduction. An H. glycines-susceptible cultivar, Kenwood 94, and a resistant cultivar, Dekalb 27-52, were grown in H. glycines-infested soil for 30 and 60 d. Ten days after planting, plants were infested with either zero, five, or ten aphids. At 30 and 60 d, the number of H. glycines females and cysts (dead females) and the number of eggs within were counted. In general, H. glycines were less abundant on the resistant than the susceptible cultivar, and H. glycines abundance increased from 30 to 60 d. At 30 d, 33% more H. glycines females and eggs were produced on the resistant cultivar in the ten-aphid treatment compared to the zero-aphid treatment. However, at 30 d the susceptible cultivar had 50% fewer H. glycines females and eggs when infested with ten aphids. At 60 d, numbers of H. glycines females and cysts and numbers of eggs on the resistant cultivar were unaffected by A. glycines feeding, while numbers of both were decreased by A. glycines on the susceptible cultivar. These results indicate that A. glycines feeding improves the quality of soybean as a host for H. glycines, but at higher herbivore population densities, this effect is offset by a decrease in resource quantity.


Assuntos
Afídeos/fisiologia , Glycine max/parasitologia , Herbivoria , Reprodução , Tylenchoidea/fisiologia , Animais , Interações Hospedeiro-Patógeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...