Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(8): e0256625, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34432852

RESUMO

Although docosahexaenoic acid (DHA), an important dietary omega-3 polyunsaturated fatty acid (PUFA), is at present primarily sourced from marine fish, bioengineered crops producing DHA may offer a more sustainable and cost-effective source. DHA has been produced in transgenic oilseed crops, however, DHA in seed oil primarily occupies the sn-1/3 positions of triacylglycerol (TAG) with relatively low amounts of DHA in the sn-2 position. To increase the amount of DHA in the sn-2 position of TAG and in seed oil, putative lysophosphatidic acid acyltransferases (LPAATs) were identified and characterized from the DHA-producing alga Schizochytrium sp. and from soybean (Glycine max). The affinity-purified proteins were confirmed to have LPAAT activity. Expression of the Schizochytrium or soybean LPAATs in DHA-producing Arabidopsis expressing the Schizochytrium PUFA synthase system significantly increased the total amount of DHA in seed oil. A novel sensitive band-selective heteronuclear single quantum coherence (HSQC) NMR method was developed to quantify DHA at the sn-2 position of glycerolipids. More than two-fold increases in sn-2 DHA were observed for Arabidopsis lines expressing Schizochytrium or soybean LPAATs, with one Schizochytrium LPAAT driving DHA accumulation in the sn-2 position to 61% of the total DHA. Furthermore, expression of a soybean LPAAT led to a redistribution of DHA-containing TAG species, with two new TAG species identified. Our results demonstrate that transgenic expression of Schizochytrium or soybean LPAATs can increase the proportion of DHA at the sn-2 position of TAG and the total amount of DHA in the seed oil of a DHA-accumulating oilseed plant. Additionally, the band-selective HSQC NMR method that we developed provides a sensitive and robust method for determining the regiochemistry of DHA in glycerolipids. These findings will benefit the advancement of sustainable sources of DHA via transgenic crops such as canola and soybean.


Assuntos
Aciltransferases/metabolismo , Proteínas de Algas/metabolismo , Arabidopsis/genética , Ácidos Docosa-Hexaenoicos/metabolismo , Óleos de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Triglicerídeos/metabolismo , Aciltransferases/química , Aciltransferases/genética , Aciltransferases/isolamento & purificação , Sequência de Aminoácidos , Genes de Plantas , Homozigoto , Espectroscopia de Ressonância Magnética , Filogenia , Plantas Geneticamente Modificadas
2.
Phytochemistry ; 172: 112279, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31999963

RESUMO

Soybeans (Glycine max (L.) Merr.) genetically modified to express aryloxyalkanoate dioxygenase-12 (AAD-12), an enzyme that confers resistance to the herbicide 2,4-D, can sometimes exhibit a darker seed coat coloration than equivalent unmodified soybeans. The biochemical basis for this coloration was investigated in a non-commercial transgenic event, DAS-411Ø4-7 that exhibited more pronounced AAD-12-associated seed coat coloration than the commercial event, DAS-444Ø6-6. Analysis of color-enriched seed coat fractions from DAS-411Ø4-7 showed that the color was due to localized accumulation of iron-chelating phenolics, particularly the isoflavone genistin, that are associated with seed coat pectic polysaccharide and produce a brown chromophore. The association between genistin, iron, and pectic polysaccharide was characterized using a variety of analytical methods. Darker seeds from commercial soybean event DAS-444Ø6-6 also show higher genistin content localized to the darker colored portions of the seed coat (with no increase in whole seed genistin levels).


Assuntos
Dioxigenases , Herbicidas , Quelantes de Ferro , Sementes , Glycine max
3.
Pest Manag Sci ; 76(4): 1500-1512, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31677217

RESUMO

BACKGROUND: RNA interference (RNAi) triggered by maize plants expressing RNA hairpins against specific western corn rootworm (WCR) transcripts have proven to be effective at controlling this pest. To provide robust crop protection, mRNA transcripts targeted by double-stranded RNA must be sensitive to knockdown and encode essential proteins. RESULTS: Using WCR adult feeding assays, we identified Sec23 as a highly lethal RNAi target. Sec23 encodes a coatomer protein, a component of the coat protein (COPII) complex that mediates ER-Golgi transport. The lethality detected in WCR adults was also observed in early instar larvae, the life stage causing most of the crop damage, suggesting that WCR adults can serve as an alternative to larvae for dsRNA screening. Surprisingly, over 85% transcript inhibition resulted in less than 40% protein knockdown, suggesting that complete protein knockdown is not necessary for Sec23 RNAi-mediated mortality. The efficacy of Sec23 dsRNA for rootworm control was confirmed in planta; T0 maize events carrying rootworm Sec23 hairpin transgenes showed high levels of root protection in greenhouse assays. A reduction in larval survival and weight were observed in the offspring of WCR females exposed to Sec23 dsRNA LC25 in diet bioassays. CONCLUSION: We describe Sec23 as RNAi target for in planta rootworm control. High mortality in exposed adult and larvae and moderate sublethal effects in the offspring of females exposed to Sec23 dsRNA LC25 , suggest the potential for field application of this RNAi trait and the need to factor in responses to sublethal exposure into insect resistance management programs. © 2019 Society of Chemical Industry.


Assuntos
Zea mays , Animais , Besouros , Feminino , Larva , Controle Biológico de Vetores , Plantas Geneticamente Modificadas , Interferência de RNA , RNA de Cadeia Dupla
4.
J Biol Chem ; 292(32): 13122-13132, 2017 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-28623231

RESUMO

Cry6Aa1 is a Bacillus thuringiensis (Bt) toxin active against nematodes and corn rootworm insects. Its 3D molecular structure, which has been recently elucidated, is unique among those known for other Bt toxins. Typical three-domain Bt toxins permeabilize receptor-free planar lipid bilayers (PLBs) by forming pores at doses in the 1-50 µg/ml range. Solubilization and proteolytic activation are necessary steps for PLB permeabilization. In contrast to other Bt toxins, Cry6Aa1 formed pores in receptor-free bilayers at doses as low as 200 pg/ml in a wide range of pH (5.5-9.5) and without the need of protease treatment. When Cry6Aa1 was preincubated with Western corn rootworm (WCRW) midgut juice or trypsin, 100 fg/ml of the toxin was sufficient to form pores in PLBs. The overall biophysical properties of the pores were similar for all three forms of the toxin (native, midgut juice- and trypsin-treated), with conductances ranging from 28 to 689 pS, except for their ionic selectivity, which was slightly cationic for the native and midgut juice-treated Cry6Aa1, whereas dual selectivity (to cations or anions) was observed for the pores formed by the trypsin-treated toxin. Enrichment of PLBs with WCRW midgut brush-border membrane material resulted in a 2000-fold reduction of the amount of native Cry6Aa1 required to form pores and affected the biophysical properties of both the native and trypsin-treated forms of the toxin. These results indicate that, although Cry6Aa1 forms pores, the molecular determinants of its mode of action are significantly different from those reported for other Bt toxins.


Assuntos
Antinematódeos/farmacologia , Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/farmacologia , Endotoxinas/farmacologia , Proteínas Hemolisinas/farmacologia , Inseticidas/farmacologia , Bicamadas Lipídicas/química , Ativação Metabólica , Animais , Antinematódeos/química , Antinematódeos/metabolismo , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Besouros/efeitos dos fármacos , Besouros/enzimologia , Besouros/crescimento & desenvolvimento , Digestão , Endotoxinas/genética , Endotoxinas/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Concentração de Íons de Hidrogênio , Proteínas de Insetos/metabolismo , Inseticidas/química , Inseticidas/metabolismo , Cinética , Larva/efeitos dos fármacos , Larva/enzimologia , Larva/crescimento & desenvolvimento , Fusão de Membrana/efeitos dos fármacos , Microvilosidades/química , Microvilosidades/enzimologia , Peptídeo Hidrolases/metabolismo , Porosidade/efeitos dos fármacos , Proteólise , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Solubilidade
5.
BMC Biol ; 14: 71, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27576487

RESUMO

BACKGROUND: The Cry6 family of proteins from Bacillus thuringiensis represents a group of powerful toxins with great potential for use in the control of coleopteran insects and of nematode parasites of importance to agriculture. These proteins are unrelated to other insecticidal toxins at the level of their primary sequences and the structure and function of these proteins has been poorly studied to date. This has inhibited our understanding of these toxins and their mode of action, along with our ability to manipulate the proteins to alter their activity to our advantage. To increase our understanding of their mode of action and to facilitate further development of these proteins we have determined the structure of Cry6Aa in protoxin and trypsin-activated forms and demonstrated a pore-forming mechanism of action. RESULTS: The two forms of the toxin were resolved to 2.7 Å and 2.0 Å respectively and showed very similar structures. Cry6Aa shows structural homology to a known class of pore-forming toxins including hemolysin E from Escherichia coli and two Bacillus cereus proteins: the hemolytic toxin HblB and the NheA component of the non-hemolytic toxin (pfam05791). Cry6Aa also shows atypical features compared to other members of this family, including internal repeat sequences and small loop regions within major alpha helices. Trypsin processing was found to result in the loss of some internal sequences while the C-terminal region remains disulfide-linked to the main core of the toxin. Based on the structural similarity of Cry6Aa to other toxins, the mechanism of action of the toxin was probed and its ability to form pores in vivo in Caenorhabditis elegans was demonstrated. A non-toxic mutant was also produced, consistent with the proposed pore-forming mode of action. CONCLUSIONS: Cry6 proteins are members of the alpha helical pore-forming toxins - a structural class not previously recognized among the Cry toxins of B. thuringiensis and representing a new paradigm for nematocidal and insecticidal proteins. Elucidation of both the structure and the pore-forming mechanism of action of Cry6Aa now opens the way to more detailed analysis of toxin specificity and the development of new toxin variants with novel activities.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/toxicidade , Endotoxinas/química , Endotoxinas/toxicidade , Proteínas Hemolisinas/química , Proteínas Hemolisinas/toxicidade , Praguicidas/toxicidade , Proteínas Citotóxicas Formadoras de Poros/química , Homologia Estrutural de Proteína , Animais , Toxinas de Bacillus thuringiensis , Bioensaio , Caenorhabditis elegans/efeitos dos fármacos , Cristalografia por Raios X , Dissulfetos/metabolismo , Modelos Moleculares , Praguicidas/química , Conformação Proteica , Tripsina/metabolismo
6.
Insect Biochem Mol Biol ; 75: 117-24, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27334721

RESUMO

The western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, is an important maize pest throughout most of the U.S. Corn Belt. Bacillus thuringiensis (Bt) insecticidal proteins including modified Cry3Aa and Cry34/35Ab1 have been expressed in transgenic maize to protect against WCR feeding damage. To date, there is limited information regarding the WCR midgut target sites for these proteins. In this study, we examined whether a cadherin-like gene from Diabrotica virgifera virgifera (DvvCad; GenBank accession # EF531715) associated with WCR larval midgut tissue is necessary for Cry3Aa or Cry34/35Ab1 toxicity. Experiments were designed to examine the sensitivity of WCR to trypsin activated Cry3Aa and Cry34/35Ab1 after oral feeding of the DvvCad dsRNA to knockdown gene expression. Quantitative real-time PCR confirmed that DvvCad mRNA transcript levels were reduced in larvae treated with cadherin dsRNA. Relative cadherin expression by immunoblot analysis and nano-liquid chromatography - mass spectrometry (nanoLC-MS) of WCR neonate brush border membrane vesicle (BBMV) preparations exposed to DvvCad dsRNA confirmed reduced cadherin expression when compared to BBMV from untreated larvae. However, the larval mortality and growth inhibition of WCR neonates exposed to cadherin dsRNA for two days followed by feeding exposure to either Cry3Aa or Cry34/35Ab1 for four days was not significantly different to that observed in insects exposed to either Cry3Aa or Cry34/35Ab1 alone. In combination, these results suggest that cadherin is unlikely to be involved in the toxicity of Cry3Aa or Cry34/35Ab1 to WCR.


Assuntos
Proteínas de Bactérias/farmacologia , Caderinas/genética , Besouros/genética , Endotoxinas/farmacologia , Proteínas Hemolisinas/farmacologia , Proteínas de Insetos/genética , Inseticidas/farmacologia , Interferência de RNA , Animais , Bacillus thuringiensis/genética , Toxinas de Bacillus thuringiensis , Caderinas/metabolismo , Besouros/efeitos dos fármacos , Besouros/crescimento & desenvolvimento , Besouros/metabolismo , Proteínas de Insetos/metabolismo , Resistência a Inseticidas , Larva/efeitos dos fármacos , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Plantas Geneticamente Modificadas/química , Reação em Cadeia da Polimerase em Tempo Real , Zea mays/química
7.
PLoS One ; 9(11): e112555, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25390338

RESUMO

Bacillus thuringiensis strains are well known for the production of insecticidal proteins upon sporulation and these proteins are deposited in parasporal crystalline inclusions. The majority of these insect-specific toxins exhibit three domains in the mature toxin sequence. However, other Cry toxins are structurally and evolutionarily unrelated to this three-domain family and little is known of their three dimensional structures, limiting our understanding of their mechanisms of action and our ability to engineer the proteins to enhance their function. Among the non-three domain Cry toxins, the Cry34Ab1 and Cry35Ab1 proteins from B. thuringiensis strain PS149B1 are required to act together to produce toxicity to the western corn rootworm (WCR) Diabrotica virgifera virgifera Le Conte via a pore forming mechanism of action. Cry34Ab1 is a protein of ∼14 kDa with features of the aegerolysin family (Pfam06355) of proteins that have known membrane disrupting activity, while Cry35Ab1 is a ∼44 kDa member of the toxin_10 family (Pfam05431) that includes other insecticidal proteins such as the binary toxin BinA/BinB. The Cry34Ab1/Cry35Ab1 proteins represent an important seed trait technology having been developed as insect resistance traits in commercialized corn hybrids for control of WCR. The structures of Cry34Ab1 and Cry35Ab1 have been elucidated to 2.15 Šand 1.80 Šresolution, respectively. The solution structures of the toxins were further studied by small angle X-ray scattering and native electrospray ion mobility mass spectrometry. We present here the first published structure from the aegerolysin protein domain family and the structural comparisons of Cry34Ab1 and Cry35Ab1 with other pore forming toxins.


Assuntos
Bacillus thuringiensis/química , Proteínas de Bactérias/química , Endotoxinas/química , Proteínas Fúngicas/química , Proteínas Hemolisinas/química , Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Cristalografia por Raios X , Endotoxinas/genética , Proteínas Fúngicas/genética , Expressão Gênica , Proteínas Hemolisinas/genética , Modelos Moleculares , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
8.
Plant Physiol ; 153(1): 99-113, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20200070

RESUMO

In higher plants, three subfamilies of sucrose nonfermenting-1 (Snf1)-related protein kinases have evolved. While the Snf1-related protein kinase 1 (SnRK1) subfamily has been shown to share pivotal roles with the orthologous yeast Snf1 and mammalian AMP-activated protein kinase in modulating energy and metabolic homeostasis, the functional significance of the two plant-specific subfamilies SnRK2 and SnRK3 in these critical processes is poorly understood. We show here that SnRK2.6, previously identified as crucial in the control of stomatal aperture by abscisic acid (ABA), has a broad expression pattern and participates in the regulation of plant primary metabolism. Inactivation of this gene reduced oil synthesis in Arabidopsis (Arabidopsis thaliana) seeds, whereas its overexpression increased Suc synthesis and fatty acid desaturation in the leaves. Notably, the metabolic alterations in the SnRK2.6 overexpressors were accompanied by amelioration of those physiological processes that require high levels of carbon and energy input, such as plant growth and seed production. However, the mechanisms underlying these functionalities could not be solely attributed to the role of SnRK2.6 as a positive regulator of ABA signaling, although we demonstrate that this kinase confers ABA hypersensitivity during seedling growth. Collectively, our results suggest that SnRK2.6 mediates hormonal and metabolic regulation of plant growth and development and that, besides the SnRK1 kinases, SnRK2.6 is also implicated in the regulation of metabolic homeostasis in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Óleos de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Sementes/metabolismo , Sacarose/metabolismo , Ácido Abscísico/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Metabolismo Energético , Ácidos Graxos Dessaturases/metabolismo , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Germinação , Vírus do Mosaico , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Regiões Promotoras Genéticas , Proteínas Serina-Treonina Quinases/genética , Plântula/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento
9.
Nature ; 459(7245): 437-41, 2009 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-19404259

RESUMO

Agricultural biotechnology is limited by the inefficiencies of conventional random mutagenesis and transgenesis. Because targeted genome modification in plants has been intractable, plant trait engineering remains a laborious, time-consuming and unpredictable undertaking. Here we report a broadly applicable, versatile solution to this problem: the use of designed zinc-finger nucleases (ZFNs) that induce a double-stranded break at their target locus. We describe the use of ZFNs to modify endogenous loci in plants of the crop species Zea mays. We show that simultaneous expression of ZFNs and delivery of a simple heterologous donor molecule leads to precise targeted addition of an herbicide-tolerance gene at the intended locus in a significant number of isolated events. ZFN-modified maize plants faithfully transmit these genetic changes to the next generation. Insertional disruption of one target locus, IPK1, results in both herbicide tolerance and the expected alteration of the inositol phosphate profile in developing seeds. ZFNs can be used in any plant species amenable to DNA delivery; our results therefore establish a new strategy for plant genetic manipulation in basic science and agricultural applications.


Assuntos
Biotecnologia/métodos , Desoxirribonucleases/química , Desoxirribonucleases/metabolismo , Marcação de Genes/métodos , Genoma de Planta/genética , Zea mays/genética , Dedos de Zinco , Desoxirribonucleases/genética , Alimentos Geneticamente Modificados , Genes de Plantas/genética , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Hereditariedade , Fosfatos de Inositol/metabolismo , Mutagênese Sítio-Dirigida/métodos , Plantas Geneticamente Modificadas , Recombinação Genética/genética , Reprodutibilidade dos Testes
10.
Anal Biochem ; 307(2): 219-25, 2002 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-12202237

RESUMO

The 15N content of pheophytin, the magnesium-free derivative of chlorophyll, can be measured with great accuracy and precision using positive-ion atmospheric pressure ionization electrospray mass spectroscopy following a simple solvent extraction of small amounts of plant tissue. The molecular weight of pheophytin prepared from Chlamydomonas reinhardtii grown in different ratios of 14N/15N showed linear regression with the isotopic input, with a precision of 0.5-1%. Using an isotope dilution strategy, we have shown that nitrogen fixation can contribute substantial 14N to pheophytin isolated from Medicago truncatula plants grown in symbiosis with Sinorhizobium meliloti. The assay is sensitive, precise, rapid, simple, and robust. These features suggest that it could become an important tool for measuring the contribution of symbiotic and associative nitrogen fixation to plant metabolism.


Assuntos
Espectrometria de Massas/métodos , Nitrogênio/análise , Feofitinas/química , Animais , Chlamydomonas reinhardtii/crescimento & desenvolvimento , Chlamydomonas reinhardtii/metabolismo , Medicago/crescimento & desenvolvimento , Medicago/metabolismo , Nitrogênio/metabolismo , Feofitinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...