Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
1.
Nat Rev Immunol ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698082

RESUMO

Vaccination remains our main defence against influenza, which causes substantial annual mortality and poses a serious pandemic threat. Influenza virus evades immunity by rapidly changing its surface antigens but, even when the vaccine is well matched to the current circulating virus strains, influenza vaccines are not as effective as many other vaccines. Influenza vaccine development has traditionally focused on the induction of protective antibodies, but there is mounting evidence that T cell responses are also protective against influenza. Thus, future vaccines designed to promote both broad T cell effector functions and antibodies may provide enhanced protection. As we discuss, such vaccines present several challenges that require new strategic and economic considerations. Vaccine-induced T cells relevant to protection may reside in the lungs or lymphoid tissues, requiring more invasive assays to assess the immunogenicity of vaccine candidates. T cell functions may contain and resolve infection rather than completely prevent infection and early illness, requiring vaccine effectiveness to be assessed based on the prevention of severe disease and death rather than symptomatic infection. It can be complex and costly to measure T cell responses and infrequent clinical outcomes, and thus innovations in clinical trial design are needed for economic reasons. Nevertheless, the goal of more effective influenza vaccines justifies renewed and intensive efforts.

2.
J Pharmacol Exp Ther ; 389(2): 229-242, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38453526

RESUMO

The drug-drug interaction (DDI) between amiodarone (AMIO) and sofosbuvir (SOF), a direct-acting hepatitis-C NS5B nucleotide polymerase inhibitor, has been associated with severe bradyarrhythmia in patients. Recent cryo-EM data has revealed that this DDI occurs at the α-subunit of L-type Cav channels, with AMIO binding at the fenestration site and SOF [or MSD nucleotide inhibitor #1 (MNI-1): analog of SOF] binding at the central cavity of the conductance pathway. In this study, we investigated the DDI between 21 AMIO analogs, including dronedarone (DRON) and MNI-1 (or SOF) in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and hCav1.2 models. Our findings indicate that among the tested AMIO analogs in hiPSC-CMs at clinically relevant concentrations, only three analogs (AA-9, AA-10, and AA-17) were able to effectively substitute for AMIO in this DDI with 1 µM MNI-1. This highlights the importance of the diethyl amino group of AMIO for interacting with MNI-1. In the hCav1.2 model, desethylamiodarone (AA-12) demonstrated synergy with 90 µM MNI-1, while three other analogs with modifications to the position of the diethyl amino group or removal of iodo groups showed weaker synergy with 90 µM MNI-1. Interestingly, DRON did not exhibit any interaction with 270 µM SOF or 90 µM MNI-1, suggesting that it could safely replace AMIO in patients requiring SOF treatment, other clinically relevant differences considered. Overall, our functional data align with the cryo-EM data, highlighting that this DDI is dependent on the structure of AMIO and cardiomyocyte resting membrane potential. SIGNIFICANCE STATEMENT: Our findings point to specific residues in the AMIO molecule playing a critical role in the DDI between AMIO and MNI-1 (SOF analog), confirming cryo-EM results. Applied at clinically relevant AMIO's concentrations or projected MNI-1's concentrations at the resting potentials mimicking the sinoatrial node, this DDI significantly slowed down or completely inhibited the beating of hiPSC-CMs. Finally, these in vitro results support the safe replacement of AMIO (Cordarone) with DRON (Multaq) for patients requiring SOF treatment, other clinical caveats considered.


Assuntos
Amiodarona , Células-Tronco Pluripotentes Induzidas , Humanos , Amiodarona/farmacologia , Amiodarona/metabolismo , Nucleotídeos/farmacologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Interações Medicamentosas , Relação Estrutura-Atividade
3.
J Med Chem ; 67(5): 3935-3958, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38365209

RESUMO

As SARS-CoV-2 continues to circulate, antiviral treatments are needed to complement vaccines. The virus's main protease, 3CLPro, is an attractive drug target in part because it recognizes a unique cleavage site, which features a glutamine residue at the P1 position and is not utilized by human proteases. Herein, we report the invention of MK-7845, a novel reversible covalent 3CLPro inhibitor. While most covalent inhibitors of SARS-CoV-2 3CLPro reported to date contain an amide as a Gln mimic at P1, MK-7845 bears a difluorobutyl substituent at this position. SAR analysis and X-ray crystallographic studies indicate that this group interacts with His163, the same residue that forms a hydrogen bond with the amide substituents typically found at P1. In addition to promising in vivo efficacy and an acceptable projected human dose with unboosted pharmacokinetics, MK-7845 exhibits favorable properties for both solubility and absorption that may be attributable to the unusual difluorobutyl substituent.


Assuntos
COVID-19 , Glutamina , Humanos , Glutamina/química , SARS-CoV-2 , Cisteína Endopeptidases/química , Invenções , Inibidores de Proteases/farmacologia , Amidas , Antivirais/farmacologia , Antivirais/química
4.
medRxiv ; 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37873362

RESUMO

Influenza viruses continually evolve new antigenic variants, through mutations in epitopes of their major surface proteins, hemagglutinin (HA) and neuraminidase (NA). Antigenic drift potentiates the reinfection of previously infected individuals, but the contribution of this process to variability in annual epidemics is not well understood. Here we link influenza A(H3N2) virus evolution to regional epidemic dynamics in the United States during 1997-2019. We integrate phenotypic measures of HA antigenic drift and sequence-based measures of HA and NA fitness to infer antigenic and genetic distances between viruses circulating in successive seasons. We estimate the magnitude, severity, timing, transmission rate, age-specific patterns, and subtype dominance of each regional outbreak and find that genetic distance based on broad sets of epitope sites is the strongest evolutionary predictor of A(H3N2) virus epidemiology. Increased HA and NA epitope distance between seasons correlates with larger, more intense epidemics, higher transmission, greater A(H3N2) subtype dominance, and a greater proportion of cases in adults relative to children, consistent with increased population susceptibility. Based on random forest models, A(H1N1) incidence impacts A(H3N2) epidemics to a greater extent than viral evolution, suggesting that subtype interference is a major driver of influenza A virus infection dynamics, presumably via heterosubtypic cross-immunity.

5.
Open Forum Infect Dis ; 10(6): ofad244, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37383245

RESUMO

Background: The Global Influenza Hospital Surveillance Network (GIHSN) was established in 2012 to conduct coordinated worldwide influenza surveillance. In this study, we describe underlying comorbidities, symptoms, and outcomes in patients hospitalized with influenza. Methods: Between November 2018 and October 2019, GIHSN included 19 sites in 18 countries using a standardized surveillance protocol. Influenza infection was laboratory-confirmed with reverse-transcription polymerase chain reaction. A multivariate logistic regression model was utilized to analyze the extent to which various risk factors predict severe outcomes. Results: Of 16 022 enrolled patients, 21.9% had laboratory-confirmed influenza; 49.2% of influenza cases were A/H1N1pdm09. Fever and cough were the most common symptoms, although they decreased with age (P < .001). Shortness of breath was uncommon among those <50 years but increased with age (P < .001). Middle and older age and history of underlying diabetes or chronic obstructive pulmonary disease were associated with increased odds of death and intensive care unit (ICU) admission, and male sex and influenza vaccination were associated with lower odds. The ICU admissions and mortality occurred across the age spectrum. Conclusions: Both virus and host factors contributed to influenza burden. We identified age differences in comorbidities, presenting symptoms, and adverse clinical outcomes among those hospitalized with influenza and benefit from influenza vaccination in protecting against adverse clinical outcomes. The GIHSN provides an ongoing platform for global understanding of hospitalized influenza illness.

6.
PLoS Comput Biol ; 19(3): e1010885, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36972311

RESUMO

Surface antigens of pathogens are commonly targeted by vaccine-elicited antibodies but antigenic variability, notably in RNA viruses such as influenza, HIV and SARS-CoV-2, pose challenges for control by vaccination. For example, influenza A(H3N2) entered the human population in 1968 causing a pandemic and has since been monitored, along with other seasonal influenza viruses, for the emergence of antigenic drift variants through intensive global surveillance and laboratory characterisation. Statistical models of the relationship between genetic differences among viruses and their antigenic similarity provide useful information to inform vaccine development, though accurate identification of causative mutations is complicated by highly correlated genetic signals that arise due to the evolutionary process. Here, using a sparse hierarchical Bayesian analogue of an experimentally validated model for integrating genetic and antigenic data, we identify the genetic changes in influenza A(H3N2) virus that underpin antigenic drift. We show that incorporating protein structural data into variable selection helps resolve ambiguities arising due to correlated signals, with the proportion of variables representing haemagglutinin positions decisively included, or excluded, increased from 59.8% to 72.4%. The accuracy of variable selection judged by proximity to experimentally determined antigenic sites was improved simultaneously. Structure-guided variable selection thus improves confidence in the identification of genetic explanations of antigenic variation and we also show that prioritising the identification of causative mutations is not detrimental to the predictive capability of the analysis. Indeed, incorporating structural information into variable selection resulted in a model that could more accurately predict antigenic assay titres for phenotypically-uncharacterised virus from genetic sequence. Combined, these analyses have the potential to inform choices of reference viruses, the targeting of laboratory assays, and predictions of the evolutionary success of different genotypes, and can therefore be used to inform vaccine selection processes.


Assuntos
COVID-19 , Vírus da Influenza A , Influenza Humana , Humanos , Influenza Humana/prevenção & controle , Vírus da Influenza A Subtipo H3N2/genética , Teorema de Bayes , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , SARS-CoV-2 , Antígenos Virais/genética , Genótipo , Fenótipo , Anticorpos Antivirais/genética
7.
J Gen Virol ; 104(2)2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36800222

RESUMO

The COVID-19 pandemic is the first to have emerged when Next Generation Sequencing was readily available and it has played the major role in following evolution of the causative agent, Severe Acute Respiratory Syndrome Coronavirus 2. Response to the pandemic was greatly facilitated though use of existing influenza surveillance networks: World Health Organization (WHO) Global Influenza Surveillance and Response System (GISRS), focussing largely on human influenza, and the OFFLU network of expertise on avian influenza established by the Food and Agricultural Organization of the United Nations (FAO) and the World Organization for Animal Health (WOAH). Data collection/deposition platforms associated with these networks, notably WHO's FluNet and the Global Initiative on Sharing All Influenza Data (GISAID) were/are being used intensely. Measures introduced to combat COVID-19 resulted in greatly decreased circulation of human seasonal influenza viruses for approximately 2 years, but circulation continued in the animal sector with an upsurge in the spread of highly pathogenic avian influenza subtype H5N1 with large numbers of wild bird deaths, culling of many poultry flocks and sporadic spill over into mammalian species, including humans, thereby increasing pandemic risk potential. While there are proposals/implementations to extend use of GISRS and GISAID to other infectious disease agents (e.g. Respiratory Syncytial Virus and Monkeypox), there is need to ensure that influenza surveillance is maintained and improved in both human and animal sectors in a sustainable manner to be truly prepared (early detection) for the next influenza pandemic.


Assuntos
COVID-19 , Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Influenza Humana , Orthomyxoviridae , Animais , Humanos , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Influenza Aviária/epidemiologia , Pandemias , COVID-19/epidemiologia , Mamíferos
8.
ACS Med Chem Lett ; 13(11): 1745-1754, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36385924

RESUMO

Drug resistance to first-line antimalarials-including artemisinin-is increasing, resulting in a critical need for the discovery of new agents with novel mechanisms of action. In collaboration with the Walter and Eliza Hall Institute and with funding from the Wellcome Trust, a phenotypic screen of Merck's aspartyl protease inhibitor library identified a series of plasmepsin X (PMX) hits that were more potent than chloroquine. Inspired by a PMX homology model, efforts to optimize the potency resulted in the discovery of leads that, in addition to potently inhibiting PMX, also inhibit another essential aspartic protease, plasmepsin IX (PMIX). Further potency and pharmacokinetic profile optimization efforts culminated in the discovery of WM382, a very potent dual PMIX/X inhibitor with robust in vivo efficacy at multiple stages of the malaria parasite life cycle and an excellent resistance profile.

9.
Sci Transl Med ; 14(655): eabn3715, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35895836

RESUMO

Several variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have emerged during the current coronavirus disease 2019 (COVID-19) pandemic. Although antibody cross-reactivity with the spike glycoproteins (S) of diverse coronaviruses, including endemic common cold coronaviruses (HCoVs), has been documented, it remains unclear whether such antibody responses, typically targeting the conserved S2 subunit, contribute to protection when induced by infection or through vaccination. Using a mouse model, we found that prior HCoV-OC43 S-targeted immunity primes neutralizing antibody responses to otherwise subimmunogenic SARS-CoV-2 S exposure and promotes S2-targeting antibody responses. Moreover, vaccination with SARS-CoV-2 S2 elicited antibodies in mice that neutralized diverse animal and human alphacoronaviruses and betacoronaviruses in vitro and provided a degree of protection against SARS-CoV-2 challenge in vivo. Last, in mice with a history of SARS-CoV-2 Wuhan-based S vaccination, further S2 vaccination induced broader neutralizing antibody response than booster Wuhan S vaccination, suggesting that it may prevent repertoire focusing caused by repeated homologous vaccination. These data establish the protective value of an S2-targeting vaccine and support the notion that S2 vaccination may better prepare the immune system to respond to the changing nature of the S1 subunit in SARS-CoV-2 variants of concern, as well as to future coronavirus zoonoses.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Coronavirus Humano OC43 , Glicoproteína da Espícula de Coronavírus , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Anticorpos Amplamente Neutralizantes , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Coronavirus Humano OC43/imunologia , Humanos , Camundongos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação
10.
Vaccines (Basel) ; 10(4)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35455338

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has prompted rapid investigation and deployment of vaccine platforms never before used to combat human disease. The severe impact on the health system and the high economic cost of non-pharmaceutical interventions, such as lockdowns and international border closures employed to mitigate the spread of COVID-19 prior to the arrival of effective vaccines, have led to calls for development and deployment of novel vaccine technologies as part of a "100-day response ambition" for the next pandemic. Prior to COVID-19, all of the pandemics (excluding HIV) in the past century have been due to influenza viruses, and influenza remains one of the most likely future pandemic threats along with new coronaviruses. New and emerging vaccine platforms are likely to play an important role in combatting the next pandemic. However, the existing well-established, proven platforms for seasonal and pandemic influenza manufacturing will also continue to be utilized to rapidly address the next influenza threat. The field of influenza vaccine manufacturing has a long history of successes, including approval of vaccines within approximately 100 days after WHO declaration of the A(H1N1) 2009 influenza pandemic. Moreover, many advances in vaccine science and manufacturing capabilities have been made in the past decade to optimize a rapid and timely response should a new influenza pandemic threat emerge.

11.
Structure ; 30(7): 947-961.e6, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35460613

RESUMO

Plasmepsins IX (PMIX) and X (PMX) are essential aspartyl proteases for Plasmodium spp. egress, invasion, and development. WM4 and WM382 inhibit PMIX and PMX in Plasmodium falciparum and P. vivax. WM4 inhibits PMX, while WM382 is a dual inhibitor of PMIX and PMX. To understand their function, we identified protein substrates. Enzyme kinetic and structural analyses identified interactions responsible for drug specificity. PMIX and PMX have similar substrate specificity; however, there are distinct differences for peptide and protein substrates. Differences in WM4 and WM382 binding for PMIX and PMX map to variations in the S' region and engagement of the active site S3 pocket. Structures of PMX reveal interactions and mechanistic detail of drug binding important for development of clinical candidates against these targets.


Assuntos
Ácido Aspártico Endopeptidases , Plasmodium falciparum , Ácido Aspártico Endopeptidases/química , Cinética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Especificidade por Substrato
12.
Influenza Other Respir Viruses ; 16(1): 3-6, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34605171

RESUMO

The COVID-19 pandemic and the measures taken to mitigate its spread have had a dramatic effect on the circulation patterns of other respiratory viruses, most especially influenza viruses. Since April 2020, the global circulation of influenza has been markedly reduced; however, it is still present in a number of different countries and could pose a renewed threat in the upcoming Northern Hemisphere winter. Influenza vaccination remains the most effective preventive measure that we have at our disposal against influenza infections and should not be ignored for the 2021-2022 season.


Assuntos
COVID-19 , Influenza Humana , Humanos , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Pandemias/prevenção & controle , SARS-CoV-2 , Vacinação
13.
J Virol ; 96(3): e0192821, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34787455

RESUMO

From 2014 to week 07/2020 the Centre for Health Protection in Hong Kong conducted screening for influenza C virus (ICV). A retrospective analysis of ICV detections to week 26/2019 revealed persistent low-level circulation with outbreaks occurring biennially in the winters of 2015 to 2016 and 2017 to 2018 (R. S. Daniels et al., J Virol 94:e01051-20, 2020, https://doi.org/10.1128/JVI.01051-20). Here, we report on an outbreak occurring in 2019 to 2020, reinforcing the observation of biennial seasonality in Hong Kong. All three outbreaks occurred in similar time frames, were subsequently dwarfed by seasonal epidemics of influenza types A and B, and were caused by similar proportions of C/Kanagawa/1/76 (K)-lineage and C/São Paulo/378/82 S1- and S2-sublineage viruses. Ongoing genetic drift was observed in all genes, with some evidence of amino acid substitution in the hemagglutinin-esterase-fusion (HEF) glycoprotein possibly associated with antigenic drift. A total of 61 ICV genomes covering the three outbreaks were analyzed for reassortment, and 9 different reassortant constellations were identified, 1 K-lineage, 4 S1-sublineage, and 4 S2-sublineage, with 6 of these being identified first in the 2019-1920 outbreak (2 S2-lineage and 4 S1-lineage). The roles that virus interference/enhancement, ICV persistent infection, genome evolution, and reassortment might play in the observed seasonality of ICV in Hong Kong are discussed. IMPORTANCE Influenza C virus (ICV) infection of humans is common, with the great majority of people being infected during childhood, though reinfection can occur throughout life. While infection normally results in "cold-like" symptoms, severe disease cases have been reported in recent years. However, knowledge of ICV is limited due to poor systematic surveillance and an inability to propagate the virus in large amounts in the laboratory. Following recent systematic surveillance in Hong Kong SAR, China, and direct ICV gene sequencing from clinical specimens, a 2-year cycle of disease outbreaks (epidemics) has been identified, with gene mixing playing a significant role in ICV evolution. Studies like those reported here are key to developing an understanding of the impact of influenza C virus infection in humans, notably where comorbidities exist and severe respiratory disease can develop.


Assuntos
Surtos de Doenças , Gammainfluenzavirus/classificação , Gammainfluenzavirus/genética , Influenza Humana/epidemiologia , Influenza Humana/virologia , Vírus Reordenados , Hemaglutininas Virais/química , Hemaglutininas Virais/genética , Hong Kong/epidemiologia , Humanos , Modelos Moleculares , Mutação , Filogenia , Vigilância em Saúde Pública , Análise de Sequência de DNA , Relação Estrutura-Atividade , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/genética
15.
Sci Immunol ; 6(65): eabi9331, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34739343

RESUMO

Protection from infection with respiratory viruses such as influenza A virus (IAV) requires T cell­mediated immune responses initiated by conventional dendritic cells (cDCs) that reside in the respiratory tract. Here, we show that effective induction of T cell responses against IAV in mice requires reinforcement of the resident lung cDC network by cDC progenitors. We found that CCR2-binding chemokines produced during IAV infection recruit pre-cDCs from blood and direct them to foci of infection, increasing the number of progeny cDCs next to sites of viral replication. Ablation of CCR2 in the cDC lineage prevented this increase and resulted in a deficit in IAV-specific T cell responses and diminished resistance to reinfection. These data suggest that the homeostatic network of cDCs in tissues is insufficient for immunity and reveal a chemokine-driven mechanism of expansion of lung cDC numbers that amplifies T cell responses against respiratory viruses.


Assuntos
Vírus da Influenza A/imunologia , Infecções por Orthomyxoviridae/imunologia , Animais , Células Dendríticas/imunologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
16.
Animals (Basel) ; 11(11)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34827799

RESUMO

The paleohistology of dyrosaurids is known from a small sample, despite being common fossils and representing a rare lineage of crocodylomorphs that survived the Cretaceous-Paleogene extinction. Their lifestyle has been inferred only from sections of the snout, vertebrae, partial femur, and tibia. To improve this, we conducted a skeletochronological and paleohistological study of midshaft cross-sections of both femora and humeri of a nearly complete Hyposaurus rogersii skeleton. We found lamellar-zonal bone that underwent remodeling, evidenced by resorption cavities and abundant secondary osteons within the primary periosteal cortex. The osteons, mostly longitudinally oriented and arranged in circular rows, often anastomose radially along a linear path, resembling radial rows. The medullary cavity is completely open, lacking trabeculae: endosteal deposition is limited to thin lamellae surrounding the cavity. Analysis of cyclical growth marks and the presence of an external fundamental system indicate the specimen was a fully mature adult 17-18 years of age. Comparison of the skeleton to others suggests sexual dimorphism and that it was female. The open medullary cavity, and no evidence for pachyosteosclerosis, osteosclerosis, osteoporosis, or pachyostosis indicate H. rogersii was not a deep diver or a fast swimmer in the open ocean but a near-shore marine ambush predator.

17.
J Gen Virol ; 102(10)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34596510

RESUMO

Neuraminidase (NA) inhibitors (NAI), oseltamivir and zanamivir, are the main antiviral medications for influenza and monitoring of susceptibility to these antivirals is routinely done by determining 50 % inhibitory concentrations (IC50) with MUNANA substrate. During 2010-2019, levels of A(H3N2) viruses presenting reduced NAI inhibition (RI) were low (~0.75 %) but varied year-on-year. The highest proportions of viruses showing RI were observed during the 2013-2014, 2016-2017 and 2017-2018 Northern Hemisphere seasons. The majority of RI viruses were found to contain positively charged NA amino acid substitutions of N329K, K/S329R, S331R or S334R, being notably higher during the 2016-2017 season. Sialidase activity kinetics were determined for viruses of RI phenotype and contemporary wild-type (WT) viruses showing close genetic relatedness and displaying normal inhibition (NI). RI phenotypes resulted from reduced sialidase activity compared to relevant WT viruses. Those containing S329R or N329K or S331R showed markedly higher Km for the substrate and Ki values for NAIs, while those with S334R showed smaller effects. Substitutions at N329 and S331 disrupt a glycosylation sequon (NDS), confirmed to be utilised by mass spectrometry. However, gain of positive charge at all three positions was the major factor influencing the kinetic effects, not loss of glycosylation. Because of the altered enzyme characteristics NAs carrying these substitutions cannot be assessed reliably for susceptibility to NAIs using standard MUNANA-based assays due to reductions in the affinity of the enzyme for its substrate and the concentration of the substrate usually used.


Assuntos
Vírus da Influenza A Subtipo H3N2/enzimologia , Neuraminidase/metabolismo , Substituição de Aminoácidos , Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Genes Virais , Glicosilação , Sequenciamento de Nucleotídeos em Larga Escala , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/genética , Cinética , Modelos Moleculares , Neuraminidase/antagonistas & inibidores , Neuraminidase/química , Neuraminidase/genética , Oseltamivir/farmacologia , Conformação Proteica , Zanamivir/farmacologia
19.
Influenza Other Respir Viruses ; 15(6): 707-710, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34346163

RESUMO

We describe a Sanger sequencing protocol for SARS-CoV-2 S-gene the Spike (S)-glycoprotein product of which, composed of receptor-binding (S1) and membrane fusion (S2) segments, is the target of vaccines used to combat COVID-19. The protocol can be used in laboratories with basic Sanger sequencing capabilities and allows rapid "at source" screening for SARS-CoV-2 variants, notably those of concern. The protocol has been applied for surveillance, with clinical specimens collected in either nucleic acid preservation lysis-mix or virus transport medium, and research involving cultured viruses, and can yield data of public health importance in a timely manner.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Análise de Sequência , Glicoproteína da Espícula de Coronavírus/genética
20.
Med ; 2(9): 1093-1109.e6, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34414384

RESUMO

BACKGROUND: Differences in humoral immunity to coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), between children and adults remain unexplained, and the effect of underlying immune dysfunction or suppression is unknown. Here, we sought to examine the antibody immune competence of children and adolescents with prevalent inflammatory rheumatic diseases, juvenile idiopathic arthritis (JIA), juvenile dermatomyositis (JDM), and juvenile systemic lupus erythematosus (JSLE) against the seasonal human coronavirus (HCoV)-OC43 that frequently infects this age group. METHODS: Sera were collected from JIA (n = 118), JDM (n = 49), and JSLE (n = 30) patients and from healthy control (n = 54) children and adolescents prior to the coronavirus disease 19 (COVID-19) pandemic. We used sensitive flow-cytometry-based assays to determine titers of antibodies that reacted with the spike and nucleoprotein of HCoV-OC43 and cross-reacted with the spike and nucleoprotein of SARS-CoV-2, and we compared them with respective titers in sera from patients with multisystem inflammatory syndrome in children and adolescents (MIS-C). FINDINGS: Despite immune dysfunction and immunosuppressive treatment, JIA, JDM, and JSLE patients maintained comparable or stronger humoral responses than healthier peers, which was dominated by immunoglobulin G (IgG) antibodies to HCoV-OC43 spike, and harbored IgG antibodies that cross-reacted with SARS-CoV-2 spike. In contrast, responses to HCoV-OC43 and SARS-CoV-2 nucleoproteins exhibited delayed age-dependent class-switching and were not elevated in JIA, JDM, and JSLE patients, which argues against increased exposure. CONCLUSIONS: Consequently, autoimmune rheumatic diseases and their treatment were associated with a favorable ratio of spike to nucleoprotein antibodies. FUNDING: This work was supported by a Centre of Excellence Centre for Adolescent Rheumatology Versus Arthritis grant, 21593, UKRI funding reference MR/R013926/1, the Great Ormond Street Children's Charity, Cure JM Foundation, Myositis UK, Lupus UK, and the NIHR Biomedical Research Centres at GOSH and UCLH. This work was supported by the Francis Crick Institute, which receives its core funding from Cancer Research UK, the UK Medical Research Council, and the Wellcome Trust.


Assuntos
Doenças Autoimunes , COVID-19 , Coronavirus Humano OC43 , Doenças Reumáticas , Adolescente , Adulto , Anticorpos Antivirais , Formação de Anticorpos , COVID-19/complicações , Criança , Humanos , Imunoglobulina G , Nucleoproteínas , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Síndrome de Resposta Inflamatória Sistêmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...