Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 14: 1219998, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37664436

RESUMO

The left and right occipital arteries provide blood supply to afferent cell bodies in the ipsilateral nodose and petrosal ganglia. This supply is free of an effective blood-ganglion barrier, so changes in occipital artery blood flow directly affect the access of circulating factors to the afferent cell bodies. The application of infrared (IR) light to modulate neural and other cell processes has yielded information about basic biological processes within tissues and is gaining traction as a potential therapy for a variety of disease processes. To address whether IR can directly modulate vascular function, we performed wire myography studies to determine the actions of IR on occipital arteries isolated from male Sprague-Dawley rats. Based on our previous research that functionally-important differences exist between occipital artery segments close to their origin at the external carotid artery (ECA) and those closer to the nodose ganglion, the occipital arteries were dissected into two segments, one closer to the ECA and the other closer to the nodose ganglion. Segments were constricted with 5-hydroxytryptamine to a level equal to 50% of the maximal response generated by the application of a high (80 mM) concentration of K+ ions. The direct application of pulsed IR (1,460 nm) for 5 s produced a rapid vasodilation in occipital arteries that was significantly more pronounced in segments closest to the ECA, although the ECA itself was minimally responsive. The vasodilation remained for a substantial time (at least 120 s) after cessation of IR application. The vasodilation during and following cessation of the IR application was markedly diminished in occipital arteries denuded of the endothelium. In addition, the vasodilation elicited by IR in endothelium-intact occipital arteries was substantially reduced in the presence of a selective inhibitor of the nitric oxide-sensitive guanylate cyclase, 1H-[1,2,4]oxadiazolo [4,3-a]quinoxalin-1-one (ODQ). It appears that IR causes endothelium-dependent, nitric-oxide-mediated vasodilation in the occipital arteries of the rat. The ability of IR to generate rapid and sustained vasodilation may provide new therapeutic approaches for restoring or improving blood flow to targeted tissues.

2.
Cell Rep ; 13(6): 1258-1271, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26527010

RESUMO

Proprioception, the sense of limb and body position, is essential for generating proper movement. Unconscious proprioceptive information travels through cerebellar-projecting neurons in the spinal cord and medulla. The progenitor domain defined by the basic-helix-loop-helix (bHLH) transcription factor, ATOH1, has been implicated in forming these cerebellar-projecting neurons; however, their precise contribution to proprioceptive tracts and motor behavior is unknown. Significantly, we demonstrate that Atoh1-lineage neurons in the spinal cord reside outside Clarke's column (CC), a main contributor of neurons relaying hindlimb proprioception, despite giving rise to the anatomical and functional correlate of CC in the medulla, the external cuneate nucleus (ECu), which mediates forelimb proprioception. Elimination of caudal Atoh1-lineages results in mice with relatively normal locomotion but unable to perform coordinated motor tasks. Altogether, we reveal that proprioceptive nuclei in the spinal cord and medulla develop from more than one progenitor source, suggesting an avenue to uncover distinct proprioceptive functions.


Assuntos
Linhagem da Célula , Cerebelo/citologia , Neurogênese , Neurônios Aferentes/citologia , Propriocepção , Corno Dorsal da Medula Espinal/citologia , Vias Aferentes/citologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cerebelo/embriologia , Cerebelo/fisiologia , Feminino , Masculino , Bulbo/citologia , Bulbo/embriologia , Bulbo/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Movimento , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurônios Aferentes/metabolismo , Corno Dorsal da Medula Espinal/embriologia , Corno Dorsal da Medula Espinal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...