Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(18): e2215193120, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37104475

RESUMO

Many animals undergo changes in functional colors during development, requiring the replacement of integument or pigment cells. A classic example of defensive color switching is found in hatchling lizards, which use conspicuous tail colors to deflect predator attacks away from vital organs. These tail colors usually fade to concealing colors during ontogeny. Here, we show that the ontogenetic blue-to-brown tail color change in Acanthodactylus beershebensis lizards results from the changing optical properties of single types of developing chromatophore cells. The blue tail colors of hatchlings are produced by incoherent scattering from premature guanine crystals in underdeveloped iridophore cells. Cryptic tail colors emerge during chromatophore maturation upon reorganization of the guanine crystals into a multilayer reflector concomitantly with pigment deposition in the xanthophores. Ontogenetic changes in adaptive colors can thus arise not via the exchange of different optical systems, but by harnessing the timing of natural chromatophore development. The incoherent scattering blue color here differs from the multilayer interference mechanism used in other blue-tailed lizards, indicating that a similar trait can be generated in at least two ways. This supports a phylogenetic analysis showing that conspicuous tail colors are prevalent in lizards and that they evolved convergently. Our results provide an explanation for why certain lizards lose their defensive colors during ontogeny and yield a hypothesis for the evolution of transiently functional adaptive colors.


Assuntos
Cromatóforos , Lagartos , Animais , Filogenia , Pigmentação , Pele
2.
Nat Commun ; 7: 13144, 2016 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-27782214

RESUMO

Unicellular phytoplanktonic algae (coccolithophores) are among the most prolific producers of calcium carbonate on the planet, with a production of ∼1026 coccoliths per year. During their lith formation, coccolithophores mainly employ coccolith-associated polysaccharides (CAPs) for the regulation of crystal nucleation and growth. These macromolecules interact with the intracellular calcifying compartment (coccolith vesicle) through the charged carboxyl groups of their uronic acid residues. Here we report the isolation of CAPs from modern day coccolithophores and their prehistoric predecessors and we demonstrate that their uronic acid content (UAC) offers a species-specific signature. We also show that there is a correlation between the UAC of CAPs and the internal saturation state of the coccolith vesicle that, for most geologically abundant species, is inextricably linked to carbon availability. These findings suggest that the UAC of CAPs reports on the adaptation of coccolithogenesis to environmental changes and can be used for the estimation of past CO2 concentrations.


Assuntos
Carbonato de Cálcio/química , Carbono/química , Haptófitas/química , Fitoplâncton/química , Polissacarídeos/química , Ácidos Urônicos/química , Adaptação Fisiológica , Calcificação Fisiológica , Carbonato de Cálcio/história , Carbonato de Cálcio/metabolismo , Carbono/história , Carbono/metabolismo , Dióxido de Carbono/química , Dióxido de Carbono/história , Dióxido de Carbono/metabolismo , Cristalização , Fósseis/história , Haptófitas/classificação , Haptófitas/metabolismo , História Antiga , Paleontologia , Fitoplâncton/classificação , Fitoplâncton/metabolismo , Polissacarídeos/história , Polissacarídeos/metabolismo , Especificidade da Espécie , Ácidos Urônicos/história , Ácidos Urônicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA