Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(22): 10221-10227, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37935022

RESUMO

A limitation of the implementation of cadmium chalcogenide quantum dots (QDs) in charge transfer systems is the efficient removal of photogenerated holes. Rapid hole transfer has typically required the ex situ functionalization of hole acceptors with groups that can coordinate to the surface of the QD. In addition to being synthetically limiting, this strategy also necessitates a competitive binding equilibrium between the hole acceptor and native, solubilizing ligands on the nanocrystal. Here we show that the incorporation of oxygen vacancies into polyoxovanadate-alkoxide clusters improves hole transfer kinetics by promoting surface interactions between the metal oxide assembly and the QD. Investigating the reactivity of oxygen-deficient clusters with phosphonate-capped QDs reveals reversible complexation of the POV-alkoxide with a phosphonate ligand at the nanocrystal surface. These findings reveal a new method of facilitating QD-hole acceptor association that bypasses the restrictions of exchange interactions.

2.
Proc Natl Acad Sci U S A ; 120(17): e2206975120, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37068259

RESUMO

Living bio-nano systems for artificial photosynthesis are of growing interest. Typically, these systems use photoinduced charge transfer to provide electrons for microbial metabolic processes, yielding a biosynthetic solar fuel. Here, we demonstrate an entirely different approach to constructing a living bio-nano system, in which electrogenic bacteria respire semiconductor nanoparticles to support nanoparticle photocatalysis. Semiconductor nanocrystals are highly active and robust photocatalysts for hydrogen (H2) evolution, but their use is hindered by the oxidative side of the reaction. In this system, Shewanella oneidensis MR-1 provides electrons to a CdSe nanocrystalline photocatalyst, enabling visible light-driven H2 production. Unlike microbial electrolysis cells, this system requires no external potential. Illuminating this system at 530 nm yields continuous H2 generation for 168 h, which can be lengthened further by replenishing bacterial nutrients.


Assuntos
Compostos de Cádmio , Pontos Quânticos , Compostos de Selênio , Shewanella , Pontos Quânticos/química , Compostos de Cádmio/química , Hidrogênio/metabolismo , Compostos de Selênio/química , Compostos de Selênio/metabolismo , Shewanella/metabolismo
3.
Chem Commun (Camb) ; 57(16): 2053-2056, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33507176

RESUMO

A photocatalytic hydrogen (H2) production system is reported using glutathione (GSH)-capped CdSe QDs with a cobalt precatalyst, yielding 130 000 mol H2 per mol cobalt over 48 hours. Analysis of the reaction mixtures after catalysis indicates that the active catalyst is a labile complex of cobalt and GSH formed in situ.

4.
Chem Commun (Camb) ; 56(62): 8762-8765, 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32628236

RESUMO

We report the improvement of photocatalytic proton reduction using molecular polyoxovanadate-alkoxide clusters as hole scavengers for CdSe quantum dots. The increased hydrogen production is explained by favorable charge interactions between reduced forms of the cluster and the charge on the quantum dots arising from the capping ligands.

5.
ACS Macro Lett ; 9(1): 7-13, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35638658

RESUMO

This Letter describes the use of CdSe quantum dots (QDs) as photocatalysts for photoinduced electron transfer reversible addition-fragmentation chain transfer (PET-RAFT) polymerization of a series of aqueous acrylamides and acrylates. The high colloidal solubility and photostability of these QDs allowed polymerization to occur with high efficiency (>90% conversion in 2.5 h), low dispersity (PDI < 1.1), and ultralow catalyst loading (<0.5 ppm). The use of protein concentrators enabled the removal of the photocatalyst from the polymer and monomer with tolerable metal contamination (8.41 ug/g). These isolated QDs could be recycled for four separate polymerizations without a significant decrease in efficiency. By changing the pore size of the protein concentrators, the QDs and polymer could be separated from the remaining monomer, allowing for the synthesis of block copolymers using a single batch of QDs with minimal purification steps and demonstrating the fidelity of chain ends.

6.
J Chem Phys ; 151(21): 210901, 2019 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-31822081

RESUMO

Quantum electrodynamics is rapidly finding a set of new applications in thresholdless lasing, photochemistry, and quantum entanglement due to the development of sophisticated patterning techniques to couple nanoscale photonic emitters with photonic and plasmonic cavities. Colloidal and epitaxial semiconductor nanocrystals or quantum dots (QDs) are promising candidates for emitters within these architectures but are dramatically less explored in this role than are molecular emitters. This perspective reviews the basic physics of emitter-cavity coupling in the weak-to-strong coupling regimes, describes common architectures for these systems, and lists possible applications (in particular, photochemistry), with a focus on the advantages and issues associated with using QDs as the emitters.


Assuntos
Dispositivos Ópticos , Pontos Quânticos/química , Processos Fotoquímicos
7.
Inorg Chem ; 57(7): 3659-3670, 2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29561594

RESUMO

Colloidal semiconductor nanocrystals, or "quantum dots" (QDs), have several optical and chemical properties that give them the potential to enable nonincremental increases in the efficiencies of many types of photocatalytic reactions relevant for energy conversion and organic synthesis. Colloidal photocatalysts have many desirable characteristics of both heterogeneous and homogeneous catalysts but come with their own particular set of challenges. This viewpoint outlines some of the obstacles one first encounters when driving reactions with these colloids and offers some strategies for overcoming these obstacles, including ways to extend their excited state lifetimes, prevent corrosion by photogenerated holes, and choose a surface chemistry and buffering system for maximum colloidal stability over a range of environmental conditions.

8.
Acta Crystallogr Sect E Struct Rep Online ; 70(Pt 11): 365-9, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25484747

RESUMO

The title compounds, C22H31NO2S, (1), and C23H33NO2S, (2), are related protected 1,2-amino alcohols. They differ in the substituents on the benzene ring, viz. 2,6-di-methyl-phenyl in (1) and 2,4,6-tri-methyl-phenyl in (2). The plane of the phenyl ring is inclined to that of the benzene ring by 28.52 (7)° in (1) and by 44.65 (19)° in (2). In the crystal of (1), N-H⋯O=S and C-H⋯O=S hydrogen bonds link mol-ecules, forming chains along [100], while in (2), similar hydrogen bonds link mol-ecules into chains along [010]. The absolute structures of both compounds were determined by resonance scattering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...