Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37959880

RESUMO

This paper provides evidence and discusses the variability in the thermomechanical behaviour of virgin and recycled polypropylene/high-density polyethylene blends without the addition of other components, which is sparse in the literature. Understanding the performance variability in recycled polymer blends is of critical importance in order to facilitate the re-entering of recycled materials to the consumer market and, thus, contribute towards a circular economy. This is an area that requires further research due to the inhomogeneity of recycled materials. Therefore, the thermal and mechanical properties of virgin and recycled polypropylene/high-density polyethylene blends were investigated systematically. Differential scanning calorimetry concludes that both the recycled and virgin blends are immiscible. Generally, recycled blends have lower overall crystallinity and melting temperatures compared with virgin blends while, remarkably, their crystallisation temperatures are compared favourably. Dynamical mechanical analysis showed little variation in the storage modulus of recycled and virgin blends. However, the alpha and beta relaxation temperatures are lower in recycled blends due to structural deterioration. Deterioration in the thermal and mechanical properties of recycled blends is thought to be caused by the presence of contaminants and structural degradation during reprocessing, resulting in shorter polymeric chains and the formation of imperfect crystallites. The tensile properties of recycled blends are also affected by the recycling process. The Young's modulus and yield strength of the recycled blends are inferior to those of virgin blends due to the deterioration during the recycling process. However, the elongation at break of the recycled blends is higher compared with the virgin blends, possibly due to the plasticity effect of the low-molecular-weight chain fragments.

2.
ACS Sens ; 8(10): 3643-3658, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37830899

RESUMO

Prostate cancer (PCa) is the second most common male cancer and is attributable to over 375,000 deaths annually. Prostate specific antigen (PSA) is a key biomarker for PCa and therefore measuring patient PSA levels is an important aspect of the diagnostic pathway. Automated immunoassays are currently utilized for PSA analysis, but they require a laboratory setting with specialized equipment and trained personnel. This results in high diagnostic costs, extended therapeutic turnaround times, and restrictions on testing capabilities in resource-limited settings. Consequently, there is a strong drive to develop point-of-care (PoC) PSA tests that can offer accurate, low-cost, and rapid results at the time and place of the patient. However, many emerging PoC tests experience a trade-off between accuracy, affordability, and accessibility which distinctly limits their translational potential. This review comprehensively assesses the translational advantages and limitations of emerging laboratory-level and commercial PoC tests for PSA determination. Electrochemical and optical PSA sensors from 2013 to 2023 are systematically examined. Furthermore, we suggest how the translational potential of emerging tests can be optimized to achieve clinical implementation and thus improve PCa diagnosis globally.


Assuntos
Antígeno Prostático Específico , Neoplasias da Próstata , Humanos , Masculino , Sistemas Automatizados de Assistência Junto ao Leito , Neoplasias da Próstata/diagnóstico , Testes Imediatos , Biomarcadores
3.
ACS Sens ; 7(4): 1122-1131, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35416035

RESUMO

Rapid antigen tests are currently used for population screening of COVID-19. However, they lack sensitivity and utilize antibodies as receptors, which can only function in narrow temperature and pH ranges. Consequently, molecularly imprinted polymer nanoparticles (nanoMIPs) are synthetized with a fast (2 h) and scalable process using merely a tiny SARS-CoV-2 fragment (∼10 amino acids). The nanoMIPs rival the affinity of SARS-CoV-2 antibodies under standard testing conditions and surpass them at elevated temperatures or in acidic media. Therefore, nanoMIP sensors possess clear advantages over antibody-based assays as they can function in various challenging media. A thermal assay is developed with nanoMIPs electrografted onto screen-printed electrodes to accurately quantify SARS-CoV-2 antigens. Heat transfer-based measurements demonstrate superior detection limits compared to commercial rapid antigen tests and most antigen tests from the literature for both the alpha (∼9.9 fg mL-1) and delta (∼6.1 fg mL-1) variants of the spike protein. A prototype assay is developed, which can rapidly (∼15 min) validate clinical patient samples with excellent sensitivity and specificity. The straightforward epitope imprinting method and high robustness of nanoMIPs produce a SARS-CoV-2 sensor with significant commercial potential for population screening, in addition to the possibility of measurements in diagnostically challenging environments.


Assuntos
COVID-19 , Impressão Molecular , Nanopartículas , Anticorpos , COVID-19/diagnóstico , Humanos , Polímeros Molecularmente Impressos , Nanopartículas/química , Sistemas Automatizados de Assistência Junto ao Leito , SARS-CoV-2
4.
Adv Colloid Interface Sci ; 299: 102563, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34826745

RESUMO

Pluronic (PEO-PPO-PEO) block copolymers can form nano-sized micelles with a structure composed of a hydrophobic PPO core and hydrophilic PEO shell layer. Pluronics are U.S. Food and Drug Administration approved polymers, which are widely used for solubilization of drugs and their delivery, gene/therapeutic delivery, diagnostics, and tissue engineering applications due to their non-ionic properties, non-toxicity, micelle forming ability, excellent biocompatibility and biodegradability. Although Pluronics have been employed as drug carrier systems for several decades, numerous issues such as rapid dissolution, shorter residence time in biological media, fast clearance and weak mechanical strength have hindered their efficacy. Pluronics have been functionalized with pH-sensitive, biological-responsive moieties, antibodies, aptamers, folic acid, drugs, different nanoparticles, and photo/thermo-responsive hydrogels. These functionalization strategies enable Pluronics to act as stimuli responsive and targeted drug delivery vehicles. Moreover, Pluronics have emerged in nano-emulsion formulations and have been utilized to improve the properties of cubosomes, dendrimers and nano-sheets, including their biocompatibility and aqueous solubility. Functionalization of Pluronics results in the significant improvement of target specificity, loading capacity, biocompatibility of nanoparticles and stimuli responsive hydrogels for the promising delivery of a range of drugs. Therefore, this review presents an overview of all advancements (from the last 15 years) in functionalized Pluronics, providing a valuable tool for industry and academia in order to optimize their use in drug or therapeutic delivery, in addition to several other biomedical applications.


Assuntos
Poloxâmero , Estados Unidos
5.
ACS Appl Mater Interfaces ; 13(24): 27868-27879, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34110781

RESUMO

We demonstrate that a novel functionalized interface, where molecularly imprinted polymer nanoparticles (nanoMIPs) are attached to screen-printed graphite electrodes (SPEs), can be utilized for the thermal detection of the cardiac biomarker troponin I (cTnI). The ultrasensitive detection of the unique protein cTnI can be utilized for the early diagnosis of myocardial infraction (i.e., heart attacks), resulting in considerably lower patient mortality and morbidity. Our developed platform presents an innovative route to develop accurate, low-cost, and disposable sensors for the diagnosis of cardiovascular diseases, specifically myocardial infraction. A reproducible and advantageous solid-phase approach was utilized to synthesize high-affinity nanoMIPs (average size = 71 nm) for cTnI, which served as synthetic receptors in a thermal sensing platform. To assess the performance and commercial potential of the sensor platform, various approaches were used to immobilize nanoMIPs onto thermocouples or SPEs: dip coating, drop casting, and a covalent approach relying on electrografting with an organic coupling reaction. Characterization of the nanoMIP-functionalized surfaces was performed with electrochemical impedance spectroscopy, atomic force microscopy, and scanning electron microscopy. Measurements from an in-house designed thermal setup revealed that covalent functionalization of nanoMIPs onto SPEs led to the most reproducible sensing capabilities. The proof of application was provided by measuring buffered solutions spiked with cTnI, which demonstrated that through monitoring changes in heat transfer at the solid-liquid interface, we can measure concentrations as low as 10 pg L-1, resulting in the most sensitive test of this type. Furthermore, preliminary data are presented for a prototype platform, which can detect cTnI with shorter measurement times and smaller sample volumes. The excellent sensor performance, versatility of the nanoMIPs, and reproducible and low-cost nature of the SPEs demonstrate that this sensor platform technology has a clear commercial route with high potential to contribute to sustainable healthcare.


Assuntos
Polímeros Molecularmente Impressos/química , Nanopartículas/química , Troponina I/análise , Biomarcadores/análise , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Eletrodos , Grafite/química , Temperatura
6.
Langmuir ; 37(27): 8177-8189, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34184901

RESUMO

It is well established that many leaf surfaces display self-cleaning properties. However, an understanding of how the surface properties interact is still not achieved. Consequently, 12 different leaf types were selected for analysis due to their water repellency and self-cleaning properties. The most hydrophobic surfaces demonstrated splitting of the νs CH2 and ν CH2 bands, ordered platelet-like structures, crystalline waxes, high-surface-roughness values, high-total-surface-free energy and apolar components of surface energy, and low polar and Lewis base components of surface energy. The surfaces that exhibited the least roughness and high polar and Lewis base components of surface energy had intracuticular waxes, yet they still demonstrated the self-cleaning action. Principal component analysis demonstrated that the most hydrophobic species shared common surface chemistry traits with low intra-class variability, while the less hydrophobic leaves had highly variable surface-chemistry characteristics. Despite this, we have shown through partial least squares regression that the leaf water contact angle (i.e., hydrophobicity) can be predicted using attenuated total reflectance Fourier transform infrared spectroscopy surface chemistry data with excellent ability. This is the first time that such a statistical analysis has been performed on a complex biological system. This model could be utilized to investigate and predict the water contact angles of a range of biological surfaces. An understanding of the interplay of properties is extremely important to produce optimized biomimetic surfaces.


Assuntos
Folhas de Planta , Ceras , Interações Hidrofóbicas e Hidrofílicas , Análise de Componente Principal , Propriedades de Superfície
7.
ACS Macro Lett ; 9(2): 152-157, 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35638675

RESUMO

Atomic force microscopy (AFM) was utilized to investigate the force associated with chain pull-out and single chain desorption of poly(styrene-co-butadiene) random copolymer thin films on mica, silicon, and graphite substrates. Chain pull-out events were common and produced a force of 20-25 pN. The polymer desorption force was strongest on the graphite substrate and weakest on the mica, which agreed with the calculated work of adhesion for each system and the substrate hydrophobicity. Furthermore, it was demonstrated that there was a systematic order to when each of these phenomena occurred during the tip retraction from the surface, which provided information about the structure of the thin films.

8.
Colloids Surf B Biointerfaces ; 181: 506-515, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31181433

RESUMO

Microbubbles (MBs), which are used as ultrasonic contrast agents, have distinct acoustic signatures which enable them to significantly enhance visualisation of the vasculature. Research is progressing to develop MBs which act as drug/gene delivery vehicles for site-specific therapeutics. In order to manufacture effective theranostic vehicles, it is imperative to understand the mechanical and nanostructural properties of these agents; this will enrich the understanding of how the structural, biophysical and chemical properties of these bubbles impact their functionality. We produced microfluidic phospholipid-based MBs due to their favourable properties, such as biocompatibility and echogenicity, as well as the ability to modify the shell for targeting applications. We have drawn upon atomic force microscopy to conduct force spectroscopy and tapping-mode imaging investigations. We have, for the first time to our knowledge, been able to accurately quantify the thickness and lipid configuration of phospholipid-shelled MBs - showing a trilayer as opposed to the conventional monolayer structure. Furthermore, we have measured MB stiffness and employed different mechanical theories to quantify the Young's modulus. We show that the Reissner theory is inappropriate for mechanical characterisation of phospholipid MBs, however, the Hertz model does offer biologically relevant comparisons. Analysis using the Alexander-de Gennes polymer brush theory has allowed us to provide new information regarding how the thickness of the polyethylene glycol brushes, end-grafted to our phospholipid microbubbles, changes with diameter.


Assuntos
Nanoestruturas/química , Fosfolipídeos/análise , Microbolhas , Microscopia de Força Atômica , Tamanho da Partícula , Estresse Mecânico
9.
Langmuir ; 34(26): 7784-7796, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29757657

RESUMO

We studied the morphology of poly(styrene- co-butadiene) random copolymers on a graphite surface. Polymer solutions were spin coated onto graphite, at various concentrations and molecular weights. The polymer films and nanostructures were imaged using atomic force microscopy. Above the overlap concentration, thin films formed. However, total wetting did not occur, despite the polymers being well above their Tg. Instead, dewetting was observed, suggesting the films were in a state of metastable equilibrium. At lower concentrations, the polymers formed networks, nanoislands, and nanoribbons. Ordered nanopatterns were observed on the surface; the polymers orientated themselves due to π-π stacking interactions reflecting the crystalline structure of the graphite. At the lowest concentration, this ordering was very pronounced. At higher concentrations, it was less defined but still statistically significant. Higher degrees of ordering were observed with poly(styrene- co-butadiene) than polystyrene and polybutadiene homopolymers as the copolymer's aromatic rings are distributed along a flexible chain, which maximizes π-π stacking. At the two lowest concentrations, the size of the nanoislands and nanoribbons remained similar with varying molecular weight. However, at higher concentrations, the polymer network features were largest at the lowest molecular weight, indicating that in this case, a large proportion of shorter chains stay on top of the adsorbed ones. The contact angles of the polymer nanostructures remained mostly constant with size, which is due to the strong polymer/graphite adhesion dominating over line tension and entropic effects.

10.
Soft Matter ; 13(36): 6152-6166, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28795749

RESUMO

The self-assembly of poly(styrene-co-butadiene) random copolymers on mica surfaces was studied by varying solution concentrations and polymer molecular weights. Toluene solutions of the poly(styrene-co-butadiene) samples were spin coated onto a mica surface and the resulting polymer morphology was investigated by atomic force microscopy. At higher concentrations, thin films formed with varying thicknesses; some dewetting was observed which depended on the molecular weight. Total dewetting did not occur despite the polymer's low glass transition temperature. Instead, partial dewetting was observed suggesting that the polymer was in a metastable equilibrium state. At lower concentrations, spherical cap shaped nanodroplets formed with varying sizes from single polymer chains to aggregates containing millions of chains. As the molecular weight was increased, fewer aggregates were observed on the surface, albeit with larger sizes resulting from increased solution viscosities and more chain entanglements at higher molecular weights. The contact angles of the nanodroplets were shown to be size dependent. A minimum contact angle occurs for droplets with radii of 100-250 nm at each molecular weight. Droplets smaller than 100 nm showed a sharp increase in contact angle; attributed to an increase in the elastic modulus of the droplets, in addition, to a positive line tension value. Droplets larger than 250 nm also showed an increased contact angle due to surface heterogeneities which cannot be avoided for larger droplets. This increase in contact angle plateaus as the droplet size reaches the macroscopic scale.

11.
Crit Rev Food Sci Nutr ; 56(8): 1334-62, 2016 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-25850035

RESUMO

There has been a rapid increase in the fabrication of various kinds of edible nanoparticles for oral delivery of bioactive agents, such as those constructed from proteins, carbohydrates, lipids, and/or minerals. It is currently difficult to compare the relative advantages and disadvantages of different kinds of nanoparticle-based delivery systems because researchers use different analytical instruments and protocols to characterize them. In this paper, we briefly review the various analytical methods available for characterizing the properties of edible nanoparticles, such as composition, morphology, size, charge, physical state, and stability. This information is then used to propose a number of standardized protocols for characterizing nanoparticle properties, for evaluating their stability to environmental stresses, and for predicting their biological fate. Implementation of these protocols would facilitate comparison of the performance of nanoparticles under standardized conditions, which would facilitate the rational selection of nanoparticle-based delivery systems for different applications in the food, health care, and pharmaceutical industries.


Assuntos
Sistemas de Liberação de Medicamentos , Alimentos , Nanopartículas/normas , Fenômenos Químicos , Estabilidade de Medicamentos , Emulsões , Humanos , Nanopartículas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...