Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 95(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38230994

RESUMO

A method for determining the fast-ion population density in magnetically confined plasmas as a function of pitch-radius, (λ, R), using a solid-state neutral-particle analyzer (ssNPA) signal and neutral-beam injection (NBI) power-output data has been developed. Oscillations in the NBI power output are replicated only in the active part of the ssNPA signal, allowing this to be separated from the passive and background signals, which usually complicate data from this diagnostic. Results obtained using this method are compared with those from standard techniques using data from the Mega-Amp Spherical Tokamak Upgrade spherical tokamak.

2.
Rev Sci Instrum ; 92(3): 033546, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33820048

RESUMO

An ion cyclotron emission (ICE) diagnostic is prepared for installation into the W7-X stellarator, with the aim to be operated in the 2022 experimental campaign. The design is based on the successful ICE diagnostic on the ASDEX Upgrade tokamak. The new diagnostic consists of four B-dot probes, mounted about 72° toroidally away (one module) from the neutral beam injector, with an unobstructed plasma view. Two of the B-dot probes are oriented parallel to the local magnetic field, aimed to detect fast magnetosonic waves. The remaining two probes are oriented poloidally, with the aim to detect slow waves. The radio frequency (RF) signals picked up by the probes are transferred via 50 Ω vacuum-compatible coaxial cables to RF detectors. Narrow band notch filters are used to protect the detectors from possible RF waves launched by the W7-X antenna. The signal will be sampled with a four-channel fast analog-to-digital converter with 14 bit depth and 1 GSample/s sampling rate. The diagnostic's phase-frequency characteristic is properly measured in order to allow measuring the wave vectors of the picked up waves.

3.
Rev Sci Instrum ; 89(10): 10I112, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399654

RESUMO

The design and unique feature of the first fast-ion loss detector (FILD) for the Mega Amp Spherical Tokamak - Upgrade (MAST-U) is presented here. The MAST-U FILD head is mounted on an axially and angularly actuated mechanism that makes it possible to independently adapt the orientation [0°, 90°] and radial position [1.40 m, 1.60 m] of the FILD head, i.e., its collimator, thus maximizing the detector velocity-space coverage in a broad range of plasma scenarios with different q95. The 3D geometry of the detector has been optimized to detect fast-ion losses from the neutral beam injectors. Orbit simulations are used to calculate the strike map and predict the expected signals. The results show a velocity-space range of [4 cm, 13 cm] in gyroradius and [30°, 85°] in pitch angle, covering the entire neutral beam ion energy range. The optical system will provide direct sight of the scintillator and simultaneous detection with two cameras, giving high spatial and temporal resolution. The MAST-U FILD will shed light on the dominant fast-ion transport mechanisms in one of the world's two largest spherical tokamaks through absolute measurements of fast-ion losses.

4.
Rev Sci Instrum ; 89(10): 10J101, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399687

RESUMO

The B-dot probe diagnostic suite on the ASDEX Upgrade tokamak has recently been upgraded with a new 125 MHz, 14 bit resolution digitizer to study ion cyclotron emission (ICE). While classic edge emission from the low field side plasma is often observed, we also measure waves originating from the core with fast fusion protons or beam injected deuterons being a possible emission driver. Comparing the measured frequency values with ion cyclotron harmonics present in the plasma places the origin of this emission on the magnetic axis, with the fundamental hydrogen/second deuterium cyclotron harmonic matching the observed values. The actual values range from ∼27 MHz at the on-axis toroidal field BT = -1.79 T to ∼40 MHz at BT = -2.62 T. When the magnetic axis position evolves during this emission, the measured frequency values track the changes in the estimated on-axis cyclotron frequency values. Core ICE is usually a transient event lasting ∼100 ms during the neutral beam startup phase. However, in some cases, core emission occurs in steady-state plasmas and lasts for longer than 1 s. These observations suggest an attractive possibility of using a non-perturbing ICE-based diagnostic to passively monitor fusion alpha particles at the location of their birth in the plasma core, in deuterium-tritium burning devices such as ITER and DEMO.

5.
Rev Sci Instrum ; 89(10): 10D125, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399877

RESUMO

Velocity-space tomography provides a way of diagnosing fast ions in a fusion plasma by combining measurements from multiple instruments. We use a toroidally viewing and a vertically viewing fast-ion D-alpha diagnostic installed on the mega-amp spherical tokamak (before the upgrade) to perform velocity-space tomography of the fast-ion distribution function. To make up for the scarce amount of data, prior information is included in the inversions. We impose a non-negativity constraint, suppress the distribution in the velocity-space region associated with null-measurements, and encode the belief that the distribution function does not extend to energies significantly higher than those expected neoclassically. This allows us to study the fast-ion velocity distributions and the derived fast-ion densities before and after a sawtooth crash.

6.
Phys Rev Lett ; 121(2): 025002, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30085760

RESUMO

The acceleration of beam ions during edge localized modes (ELMs) in a tokamak is observed for the first time through direct measurements of fast-ion losses in low collisionality plasmas. The accelerated beam-ion population exhibits well-localized velocity-space structures which are revealed by means of tomographic inversion of the measurement, showing energy gains of the order of tens of keV. This suggests that the ion acceleration results from a resonant interaction between the beam ions and parallel electric fields arising during the ELM. Orbit simulations are carried out to identify the mode-particle resonances responsible for the energy gain in the particle phase space. The observation motivates the incorporation of a kinetic description of fast particles in ELM models and may contribute to a better understanding of the mechanisms responsible for particle acceleration, ubiquitous in astrophysical and space plasmas.

7.
Phys Rev Lett ; 115(21): 215004, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26636857

RESUMO

Electron and ion heating characteristics during merging reconnection start-up on the MAST spherical tokamak have been revealed in detail using a 130 channel yttrium aluminum garnet (YAG) and a 300 channel Ruby-Thomson scattering system and a new 32 chord ion Doppler tomography diagnostic. Detailed 2D profile measurements of electron and ion temperature together with electron density have been achieved for the first time and it is found that electron temperature forms a highly localized hot spot at the X point and ion temperature globally increases downstream. For the push merging experiment when the guide field is more than 3 times the reconnecting field, a thick layer of a closed flux surface form by the reconnected field sustains the temperature profile for longer than the electron and ion energy relaxation time ~4-10 ms, both characteristic profiles finally forming a triple peak structure at the X point and downstream. An increase in the toroidal guide field results in a more peaked electron temperature profile at the X point, and also produces higher ion temperatures at this point, but the ion temperature profile in the downstream region is unaffected.

8.
Phys Rev Lett ; 114(12): 125004, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25860751

RESUMO

Recent measurements of microwave and x-ray emission during edge localized mode (ELM) activity in tokamak plasmas provide a fresh perspective on ELM physics. It is evident that electron kinetics, which are not incorporated in standard (fluid) models for the instability that drives ELMs, play a key role in the new observations. These effects should be included in future models for ELMs and the ELM cycle. The observed radiative effects paradoxically imply acceleration of electrons parallel to the magnetic field combined with rapid acquisition of perpendicular momentum. It is shown that this paradox can be resolved by the action of the anomalous Doppler instability which enables fast collective radiative relaxation, in the perpendicular direction, of electrons accelerated in the parallel direction by inductive electric fields generated by the initial ELM instability.

9.
Rev Sci Instrum ; 85(11): 11D701, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25430211

RESUMO

The proton detector (PD) measures 3 MeV proton yield distributions from deuterium-deuterium fusion reactions within the Mega Amp Spherical Tokamak (MAST). The PD's compact four-channel system of collimated and individually oriented silicon detectors probes different regions of the plasma, detecting protons (with gyro radii large enough to be unconfined) leaving the plasma on curved trajectories during neutral beam injection. From first PD data obtained during plasma operation in 2013, proton production rates (up to several hundred kHz and 1 ms time resolution) during sawtooth events were compared to the corresponding MAST neutron camera data. Fitted proton emission profiles in the poloidal plane demonstrate the capabilities of this new system.

10.
Phys Rev Lett ; 90(13): 131101, 2003 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-12689272

RESUMO

A model for the solar coronal magnetic field is proposed where multiple directed loops evolve in space and time. Loops injected at small scales are anchored by footpoints of opposite polarity moving randomly on a surface. Nearby footpoints of the same polarity aggregate, and loops can reconnect when they collide. This may trigger a cascade of further reconnection, representing a solar flare. Numerical simulations show that a power law distribution of flare energies emerges, associated with a scale-free network of loops, indicating self-organized criticality.

11.
Phys Rev Lett ; 87(25): 255002, 2001 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-11736584

RESUMO

The surfatron offers the possibility of particle acceleration to arbitrarily high energies, given a sufficiently large system. Surfatron acceleration of electrons by waves excited by ions reflected from supernova remnant (SNR) shocks is investigated using particle simulations. It is shown that surfatron and stochastic acceleration could provide a seed population for the acceleration of cosmic ray electrons at SNR shocks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...