Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Spectrosc ; 76(2): 228-234, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34342491

RESUMO

Photoluminescence spectroscopy is a nondestructive optical method that is widely used to characterize semiconductors. In the photoluminescence process, a substance absorbs photons and emits light with longer wavelengths via electronic transitions. This paper discusses a method for identifying substances from their photoluminescence spectra using machine learning, a technique that is efficient in making classifications. Neural networks were constructed by taking simulated photoluminescence spectra as the input and the identity of the substance as the output. In this paper, six different semiconductors were chosen as categories: gallium oxide (Ga2O3), zinc oxide (ZnO), gallium nitride (GaN), cadmium sulfide (CdS), tungsten disulfide (WS2), and cesium lead bromide (CsPbBr3). The developed algorithm has a high accuracy (>90%) for assigning a substance to one of these six categories from its photoluminescence spectrum and correctly identified a mixed Ga2O3/ZnO sample.

2.
Sci Rep ; 10(1): 21022, 2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33273495

RESUMO

Monoclinic gallium oxide (ß-Ga2O3) is attracting intense focus as a material for power electronics, thanks to its ultra-wide bandgap (4.5-4.8 eV) and ability to be easily doped n-type. Because the holes self-trap, the band-edge luminescence is weak; hence, ß-Ga2O3 has not been regarded as a promising material for light emission. In this work, optical and structural imaging methods revealed the presence of localized surface defects that emit in the near-UV (3.27 eV, 380 nm) when excited by sub-bandgap light. The PL emission of these centers is extremely bright-50 times brighter than that of single-crystal ZnO, a direct-gap semiconductor that has been touted as an active material for UV devices.

3.
Appl Opt ; 59(10): 3058-3063, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32400585

RESUMO

Confocal laser scanning microscopy (CLSM) is a preferred method for obtaining optical images with submicrometer resolution. Replacing the pinhole and detector of a CLSM with a digital camera [charge-coupled device (CCD) or complementary metal oxide semiconductor (CMOS)] has the potential to simplify the design and reduce cost. However, the relatively slow speed of a typical camera results in long scans. To address this issue, in the present investigation a microlens array was used to split the laser beam into 48 beamlets that are focused onto the sample. In essence, 48 pinhole-detector measurements were performed in parallel. Images obtained from the 48 laser spots were stitched together into a final image.

4.
Sci Rep ; 7(1): 6659, 2017 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-28751708

RESUMO

Materials with persistent photoconductivity (PPC) experience an increase in conductivity upon exposure to light that persists after the light is turned off. Although researchers have shown that this phenomenon could be exploited for novel memory storage devices, low temperatures (below 180 K) were required. In the present work, two-point resistance measurements were performed on annealed strontium titanate (SrTiO3, or STO) single crystals at room temperature. After illumination with sub-gap light, the resistance decreased by three orders of magnitude. This markedly enhanced conductivity persisted for several days in the dark. Results from IR spectroscopy, electrical measurements, and exposure to a 405 nm laser suggest that contact resistance plays an important role. The laser was then used as an "optical pen" to write a low-resistance path between two contacts, demonstrating the feasibility of optically defined, transparent electronics.

5.
J Phys Chem Lett ; 8(13): 2887-2894, 2017 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-28593766

RESUMO

We demonstrate a van der Waals Schottky junction defined by crystalline phases of multilayer In2Se3. Besides ideal diode behaviors and the gate-tunable current rectification, the thermoelectric power is significantly enhanced in these junctions by more than three orders of magnitude compared with single-phase multilayer In2Se3, with the thermoelectric figure-of-merit approaching ∼1 at room temperature. Our results suggest that these significantly improved thermoelectric properties are not due to the 2D quantum confinement effects but instead are a consequence of the Schottky barrier at the junction interface, which leads to hot carrier transport and shifts the balance between thermally and field-driven currents. This "bulk" effect extends the advantages of van der Waals materials beyond the few-layer limit. Adopting such an approach of using energy barriers between van der Waals materials, where the interface states are minimal, is expected to enhance the thermoelectric performance in other 2D materials as well.

6.
PLoS One ; 11(11): e0166212, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27829052

RESUMO

In conventional confocal microscopy, a physical pinhole is placed at the image plane prior to the detector to limit the observation volume. In this work, we present a modular design of a scanning confocal microscope which uses a CCD camera to replace the physical pinhole for materials science applications. Experimental scans were performed on a microscope resolution target, a semiconductor chip carrier, and a piece of etched silicon wafer. The data collected by the CCD were processed to yield images of the specimen. By selecting effective pixels in the recorded CCD images, a virtual pinhole is created. By analyzing the image moments of the imaging data, a lateral resolution enhancement is achieved by using a 20 × / NA = 0.4 microscope objective at 532 nm laser wavelength.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Microscopia Confocal/métodos , Tecnologia de Fibra Óptica , Microscopia Confocal/instrumentação
7.
J Chem Phys ; 144(11): 114902, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-27004896

RESUMO

The mechanism of reversible photodegradation of 1-substituted aminoanthraquinones doped into poly(methyl methacrylate) and polystyrene is investigated. Time-dependent density functional theory is employed to predict the transition energies and corresponding oscillator strengths of the proposed reversibly and irreversibly damaged dye species. Ultraviolet-visible and Fourier transform infrared (FTIR) spectroscopy are used to characterize which species are present. FTIR spectroscopy indicates that both dye and polymer undergo reversible photodegradation when irradiated with a visible laser. These findings suggest that photodegradation of 1-substituted aminoanthraquinones doped in polymers originates from interactions between dyes and photoinduced thermally degraded polymers, and the metastable product may recover or further degrade irreversibly.

8.
Phys Rev Lett ; 111(18): 187403, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24237562

RESUMO

Persistent photoconductivity was observed in strontium titanate (SrTiO(3)) single crystals. When exposed to sub-bandgap light (2.9 eV or higher) at room temperature, the free-electron concentration increases by over 2 orders of magnitude. After the light is turned off, the enhanced conductivity persists for several days, with negligible decay. From positron lifetime measurements, the persistent photoconductivity is attributed to the excitation of an electron from a titanium vacancy defect into the conduction band, with a very low recapture rate.

9.
Phys Rev Lett ; 111(1): 017401, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23863026

RESUMO

Positron annihilation spectra reveal isolated zinc vacancy (V(Zn)) creation in single-crystal ZnO exposed to 193-nm radiation at 100 mJ/cm(2) fluence. The appearance of a photoluminescence excitation peak at 3.18 eV in irradiated ZnO is attributed to an electronic transition from the V(Zn) acceptor level at ~100 meV to the conduction band. The observed V(Zn) density profile and hyperthermal Zn(+) ion emission support zinc vacancy-interstitial Frenkel pair creation by exciting a wide 6.34 eV Zn-O antibonding state at 193-nm photon-a novel photoelectronic process for controlled V(Zn) creation in ZnO.

10.
J Phys Chem A ; 116(39): 9680-8, 2012 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-22971173

RESUMO

Decomposition of γ-cyclotrimethylene trinitramine (γ-RDX) under high pressure-high temperature conditions was examined to elucidate the reactive behavior of RDX crystals. Vibrational spectroscopy measurements were obtained for single crystals in a diamond anvil cell (DAC) at pressures from 6 to 12 GPa and temperatures up to 600 K. Global decomposition rates, activation energies, and activation volumes at several pressures and temperatures below the P-T locus for the γ-RDX decomposition were obtained. Similar to ε-RDX, but in contrast to α-RDX, we found that pressure decelerates the decomposition of γ-RDX. The decomposition deceleration with pressure in the γ-phase can be attributed to pressure-inhibiting bond homolysis step(s). The main decomposition species were identified as N(2)O, CO(2), and H(2)O, in accord with the species reported for the α-phase decomposition at high pressures. This work complements previous studies on RDX at HP-HT conditions and provides comprehensive results on the reactive behavior of γ-RDX; the γ-phase plays a key role in RDX decomposition at P-T conditions relevant to shock wave initiation.

11.
Neuroimage ; 40(3): 1034-43, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18272402

RESUMO

To identify the neural constituents responsible for generating polarized light changes, we created spatially resolved movies of propagating action potentials from stimulated lobster leg nerves using both reflection and transmission imaging modalities. Changes in light polarization are associated with membrane depolarization and provide sub-millisecond temporal resolution. Typically, signals are detected using light transmitted through tissue; however, because we eventually would like to apply polarization techniques in-vivo, reflected light is required. In transmission mode, the optical signal was largest throughout the center of the nerve, suggesting that most of the optical signal arose from the inner nerve bundle. In reflection mode, polarization changes were largest near the edges, suggesting that most of the optical signal arose from the outer sheath. In support of these observations, an optical model of the tissue showed that the outer sheath is more reflective while the inner nerve bundle is more transmissive. In order to apply these techniques in-vivo, we must consider that brain tissue does not have a regular orientation of processes as in the lobster nerve. We tested the effect of randomizing cell orientation by tying the nerve in an overhand knot prior to imaging, producing polarization changes that can be imaged even without regular cell orientations.


Assuntos
Potenciais de Ação/fisiologia , Nephropidae/fisiologia , Algoritmos , Animais , Interpretação Estatística de Dados , Eletrofisiologia , Processamento de Imagem Assistida por Computador , Técnicas In Vitro , Raios Infravermelhos , Microscopia de Polarização , Microscopia de Vídeo
12.
Appl Opt ; 46(10): 1866-71, 2007 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-17356632

RESUMO

Optical scattering techniques have the potential to provide noninvasive measurements of neural activity with good spatial and temporal resolution. We used the lobster nerve as a model system to investigate and record event-related optical signals with a modulated light source and heterodyne detection system. We observed changes in the transmitted birefringent light intensity, corresponding with electrophysiological measurements of the action potential. The photon delay was below the detection threshold, in part due to the small size of the nerve bundle. Our system allowed us to place an upper bound on the magnitude of the phase change of 0.01 degrees. The physiological stability of the preparation allows comprehensive characterization of biological and instrumentation noise sources for testing optical measurement systems.


Assuntos
Potenciais de Ação/fisiologia , Interpretação de Imagem Assistida por Computador/métodos , Nervos Periféricos/fisiologia , Fotometria/instrumentação , Fotometria/métodos , Refratometria/instrumentação , Refratometria/métodos , Animais , Interpretação de Imagem Assistida por Computador/instrumentação , Técnicas In Vitro , Nephropidae , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...