Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 868, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-32054834

RESUMO

Synthetic biology, genome engineering and directed evolution offer innumerable tools to expedite engineering of strains for optimising biosynthetic pathways. One of the most radical is SCRaMbLE, a system of inducible in vivo deletion and rearrangement of synthetic yeast chromosomes, diversifying the genotype of millions of Saccharomyces cerevisiae cells in hours. SCRaMbLE can yield strains with improved biosynthetic phenotypes but is limited by screening capabilities. To address this bottleneck, we combine automated sample preparation, an ultra-fast 84-second LC-MS method, and barcoded nanopore sequencing to rapidly isolate and characterise the best performing strains. Here, we use SCRaMbLE to optimise yeast strains engineered to produce the triterpenoid betulinic acid. Our semi-automated workflow screens 1,000 colonies, identifying and sequencing 12 strains with between 2- to 7-fold improvement in betulinic acid titre. The broad applicability of this workflow to rapidly isolate improved strains from a variant library makes this a valuable tool for biotechnology.


Assuntos
Genes Sintéticos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Triterpenos/metabolismo , Biotecnologia , Cromatografia Líquida , Cromossomos Fúngicos , Evolução Molecular Direcionada , Biblioteca Gênica , Estudos de Associação Genética , Engenharia Genética , Testes Genéticos , Genoma Fúngico , Espectrometria de Massas , Triterpenos Pentacíclicos , Recombinação Genética , Biologia Sintética , Ácido Betulínico
2.
SLAS Technol ; 24(3): 291-297, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30165777

RESUMO

Biofoundries have enabled the ability to automate the construction of genetic constructs using computer-aided design. In this study, we have developed the methodology required to abstract and automate the construction of yeast-compatible designs. We demonstrate the use of our in-house software tool, AMOS, to coordinate with design software, JMP, and robotic liquid handling platforms to successfully manage the construction of a library of 88 yeast expression plasmids. In this proof-of-principle study, we used three fluorescent genes as proxy for three enzyme coding sequences. Our platform has been designed to quickly iterate around a design cycle of four protein coding sequences per plasmid, with larger numbers possible with multiplexed genome integrations in Saccharomyces cerevisiae. This work highlights how developing scalable new biotechnology applications requires a close integration between software development, liquid handling robotics, and protocol development.


Assuntos
Automação Laboratorial/métodos , Genética Microbiana/métodos , Biologia Molecular/métodos , Saccharomyces cerevisiae/genética , Ensaios de Triagem em Larga Escala , Robótica/métodos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Software , Manejo de Espécimes/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA