Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Gastrointest Liver Physiol ; 326(6): G631-G642, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38593468

RESUMO

Lysophosphatidic acid (LPA) is a bioactive lipid molecule that regulates a wide array of cellular functions, including proliferation, differentiation, and survival, via activation of cognate receptors. The LPA5 receptor is highly expressed in the intestinal epithelium, but its function in restoring intestinal epithelial integrity following injury has not been examined. Here, we use a radiation-induced injury model to study the role of LPA5 in regulating intestinal epithelial regeneration. Control mice (Lpar5f/f) and mice with an inducible, epithelial cell-specific deletion of Lpar5 in the small intestine (Lpar5IECKO) were subjected to 10 Gy total body X-ray irradiation and analyzed during recovery. Repair of the intestinal mucosa was delayed in Lpar5IECKO mice with reduced epithelial proliferation and increased crypt cell apoptosis. These effects were accompanied by reduced numbers of OLFM4+ intestinal stem cells (ISCs). The effects of LPA5 on ISCs were corroborated by studies using organoids derived from Lgr5-lineage tracking reporter mice with deletion of Lpar5 in Lgr5+-stem cells (Lgr5Cont or Lgr5ΔLpar5). Irradiation of organoids resulted in fewer numbers of Lgr5ΔLpar5 organoids retaining Lgr5+-derived progenitor cells compared with Lgr5Cont organoids. Finally, we observed that impaired regeneration in Lpar5IECKO mice was associated with reduced numbers of Paneth cells and decreased expression of Yes-associated protein (YAP), a critical factor for intestinal epithelial repair. Our study highlights a novel role for LPA5 in regeneration of the intestinal epithelium following irradiation and its effect on the maintenance of Paneth cells that support the stem cell niche.NEW & NOTEWORTHY We used mice lacking expression of the lysophosphatidic acid receptor 5 (LPA5) in intestinal epithelial cells and intestinal organoids to show that the LPA5 receptor protects intestinal stem cells and progenitors from radiation-induced injury. We show that LPA5 induces YAP signaling and regulates Paneth cells.


Assuntos
Proliferação de Células , Mucosa Intestinal , Receptores de Ácidos Lisofosfatídicos , Regeneração , Transdução de Sinais , Proteínas de Sinalização YAP , Animais , Receptores de Ácidos Lisofosfatídicos/metabolismo , Receptores de Ácidos Lisofosfatídicos/genética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos da radiação , Camundongos , Regeneração/efeitos da radiação , Proteínas de Sinalização YAP/metabolismo , Proliferação de Células/efeitos da radiação , Células-Tronco/efeitos da radiação , Células-Tronco/metabolismo , Organoides/metabolismo , Organoides/efeitos da radiação , Camundongos Knockout , Apoptose/efeitos da radiação , Lisofosfolipídeos/metabolismo , Intestino Delgado/efeitos da radiação , Intestino Delgado/metabolismo , Lesões Experimentais por Radiação/metabolismo , Lesões Experimentais por Radiação/patologia
2.
Dev Biol ; 387(2): 191-202, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24440658

RESUMO

Krüppel-like factor 5 (KLF5) is a pro-proliferative transcriptional regulator primarily expressed in the intestinal crypt epithelial cells. Constitutive intestine-specific deletion of Klf5 is neonatal lethal suggesting a crucial role for KLF5 in intestinal development and homeostasis. We have previously shown Klf5 to play an active role regulating intestinal tumorigenesis. Here we examine the effect of inducible intestine-specific deletion of Klf5 in adult mice. Klf5 is lost from the intestine beginning at day 3 after the start of a 5-day treatment with the inducer tamoxifen. Although the mice have no significant weight loss or lethality, the colonic tissue shows signs of epithelial distress starting at day 3 following induction. Accompanying the morphological changes is a significant loss of proliferative crypt epithelial cells as revealed by BrdU or Ki67 staining at days 3 and 5 after start of tamoxifen. We also observed a loss of goblet cells from the colon and Paneth cells from the small intestine upon induced deletion of Klf5. In addition, loss of Klf5 from the colonic epithelium is accompanied by a regenerative response that coincides with an expansion in the zone of Sox9 expression along the crypt axis. At day 11, both proliferation and Sox9 expression return to baseline levels. Microarray and quantitative PCR analyses reveal an up-regulation of several regeneration-associated genes (Reg1A, Reg3G and Reg3B) and down-regulation of many Klf5 targets (Ki-67, cyclin B, Cdc2 and cyclin D1). Sox9 and Reg1A protein levels are also increased upon Klf5 loss. Lentiviral-mediated knockdown of KLF5 and exogenous expression of KLF5 in colorectal cancer cell lines confirm that Sox9 expression is negatively regulated by KLF5. Furthermore, ChIP assays reveal a direct association of KLF5 with both the Sox9 and Reg1A promoters. We have shown that disruption of epithelial homeostasis due to Klf5 loss from the adult colon is followed by a regenerative response led by Sox9 and the Reg family of proteins. Our study demonstrates that adult mouse colonic tissue undergoes acute physiological changes to accommodate the loss of Klf5 withstanding epithelial damage further signifying importance of Klf5 in colonic homeostasis.


Assuntos
Colo/fisiologia , Fatores de Transcrição Kruppel-Like/genética , Regeneração/genética , Animais , Antineoplásicos Hormonais/farmacologia , Proteína Quinase CDC2/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/metabolismo , Ciclina B/metabolismo , Ciclina D1/metabolismo , Regulação para Baixo , Células Caliciformes/efeitos dos fármacos , Células HCT116 , Células HEK293 , Humanos , Antígeno Ki-67/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Litostatina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas a Pancreatite , Celulas de Paneth/efeitos dos fármacos , Regiões Promotoras Genéticas , Proteínas/metabolismo , Interferência de RNA , RNA Interferente Pequeno , Fatores de Transcrição SOX9/metabolismo , Deleção de Sequência , Transdução de Sinais/genética , Tamoxifeno/farmacologia , Regulação para Cima
3.
Gastroenterology ; 141(4): 1302-13, 1313.e1-6, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21763241

RESUMO

BACKGROUND & AIMS: Krüppel-like factor 5 (KLF5) is transcription factor that is expressed by dividing epithelial cells of the intestinal epithelium. KLF5 promotes proliferation in vitro and in vivo and is induced by mitogens and various stress stimuli. To study the role of KLF5 in intestinal epithelial homeostasis, we examined the phenotype of mice with conditional deletion of Klf5 in the gut. METHODS: Mice were generated with intestinal-specific deletion of Klf5 (Vil-Cre;Klf5fl/fl). Morphologic changes in the small intestine and colon were examined by immunohistochemistry, immunoblotting, and real-time polymerase chain reaction. RESULTS: Klf5 mutant mice were born at a normal Mendelian ratio but had high mortality compared with controls. Complete deletion of Klf5 from the intestinal mucosa resulted in neonatal lethality that corresponded with an absence of epithelial proliferation. Variegated intestinal-specific deletion of Klf5 in adult mice resulted in morphologic changes that included a regenerative phenotype, impaired barrier function, and inflammation. Adult mutant mice exhibited defects in epithelial differentiation and migration. These changes were associated with reduced expression of Caudal type homeobox (Cdx) 1, Cdx2, and Eph and ephrin signaling proteins. Concomitantly, Wnt signaling to ß-catenin was reduced. Proliferation in regenerative crypts was associated with increased expression of the progenitor cell marker Sox9. CONCLUSIONS: Deletion of Klf5 in the gut epithelium of mice demonstrated that KLF5 maintains epithelial proliferation, differentiation, and cell positioning along the crypt radial axis. Morphologic changes that occur with deletion of Klf5 are associated with disruption of canonical Wnt signaling and increased expression of Sox9.


Assuntos
Colo/metabolismo , Células Epiteliais/metabolismo , Íleo/metabolismo , Absorção Intestinal , Mucosa Intestinal/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Animais , Western Blotting , Fator de Transcrição CDX2 , Diferenciação Celular , Movimento Celular , Proliferação de Células , Colo/patologia , Efrinas/metabolismo , Células Epiteliais/patologia , Genótipo , Proteínas de Homeodomínio/metabolismo , Íleo/patologia , Imuno-Histoquímica , Mucosa Intestinal/patologia , Fatores de Transcrição Kruppel-Like/deficiência , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Permeabilidade , Fenótipo , Reação em Cadeia da Polimerase , Receptores da Família Eph/metabolismo , Regeneração , Fatores de Transcrição SOX9/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
4.
Gastroenterology ; 141(4): 1381-92, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21723221

RESUMO

BACKGROUND & AIMS: Inflammatory bowel disease increases the risks of colon cancer and colitis-associated cancer (CAC). Epithelial cell-derived matrix metalloproteinase (MMP)-9 mediates inflammation during acute colitis and the cleavage and activation of the transcription factor Notch1, which prevents differentiation of progenitor cells into goblet cells. However, MMP-9 also protects against the development of CAC and acts as a tumor suppressor. We investigated the mechanisms by which MMP-9 protects against CAC in mice. METHODS: C57/B6 wild-type mice were given a single dose of azoxymethane and 2 cycles of dextran sulfate sodium (DSS). Mice were also given the γ-secretase inhibitor difluorophenacetyl-l-alanyl-S-phenylglycine t-butyl ester (DAPT) or dimethyl sulfoxide (control) during each DSS cycle; they were killed on day 56. We analyzed embryonic fibroblasts isolated from wild-type and MMP-9-/- mice and HCT116 cells that were stably transfected with MMP-9. RESULTS: Wild-type mice were more susceptible to CAC following inhibition of Notch1 by DAPT, shown by increased numbers of tumors and level of dysplasia compared with controls. Inhibition of Notch1 signaling significantly reduced protein levels of active Notch1, p53, p21WAF1/Cip1, Bax-1, active caspase-3, as well as apoptosis, compared with controls. Similar results were observed in transgenic HCT116 cells and embryonic fibroblasts from MMP-9-/- mice on γ-radiation-induced damage of DNA. CONCLUSIONS: MMP-9 mediates Notch1 signaling via p53 to regulate apoptosis, cell cycle arrest, and inflammation. By these mechanisms, it might prevent CAC.


Assuntos
Colite/enzimologia , Colo/enzimologia , Neoplasias do Colo/enzimologia , Metaloproteinase 9 da Matriz/metabolismo , Receptor Notch1/metabolismo , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Apoptose , Azoximetano , Caspase 3/metabolismo , Colite/induzido quimicamente , Colite/patologia , Colo/efeitos dos fármacos , Colo/imunologia , Colo/patologia , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/imunologia , Neoplasias do Colo/patologia , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Citocinas/genética , Citocinas/metabolismo , Dano ao DNA , Sulfato de Dextrana , Dipeptídeos/farmacologia , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Fibroblastos/enzimologia , Fibroblastos/efeitos da radiação , Raios gama , Células HCT116 , Humanos , Metaloproteinase 9 da Matriz/deficiência , Metaloproteinase 9 da Matriz/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/metabolismo , Receptor Notch1/antagonistas & inibidores , Transdução de Sinais , Fatores de Tempo , Transfecção , Proteína Supressora de Tumor p53/metabolismo
5.
Dev Biol ; 349(2): 310-20, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21070761

RESUMO

The zinc finger transcription factor, Krüppel-like factor 4 (KLF4), is expressed in the post-mitotic, differentiated epithelial cells lining the intestinal tract and exhibits a tumor suppressive effect on intestinal tumorigenesis. Here we report a role for KLF4 in maintaining homeostasis of intestinal epithelial cells. Mice with conditional ablation of the Klf4 gene from the intestinal epithelium were viable. However, both the rates of proliferation and migration of epithelial cells were increased in the small intestine of mutant mice. In addition, the brush-border alkaline phosphatase was reduced as was expression of ephrine-B1 in the small intestine, resulting in mispositioning of Paneth cells to the upper crypt region. In the colon of mutant mice, there was a reduction of the differentiation marker, carbonic anhydrase-1, and failure of differentiation of goblet cells. Mechanistically, deletion of Klf4 from the intestine resulted in activation of genes in the Wnt pathway and reduction in expression of genes encoding regulators of differentiation. Taken together, these data provide new insights into the function of KLF4 in regulating postnatal proliferation, migration, differentiation, and positioning of intestinal epithelial cells and demonstrate an essential role for KLF4 in maintaining normal intestinal epithelial homeostasis in vivo.


Assuntos
Diferenciação Celular/fisiologia , Células Epiteliais/citologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Homeostase/fisiologia , Mucosa Intestinal/fisiologia , Fatores de Transcrição Kruppel-Like/deficiência , Fosfatase Alcalina/metabolismo , Animais , Western Blotting , Bromodesoxiuridina , Anidrase Carbônica I/metabolismo , Movimento Celular , Proliferação de Células , Efrina-B1/metabolismo , Imunofluorescência , Deleção de Genes , Técnicas Histológicas , Imuno-Histoquímica , Mucosa Intestinal/metabolismo , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Reação em Cadeia da Polimerase
6.
Gastroenterology ; 140(2): 540-549.e2, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21078320

RESUMO

BACKGROUND & AIMS: Krüppel-like factor 5 (KLF5) is a transcription factor that promotes proliferation, is highly expressed in dividing crypt cells of the gastrointestinal epithelium, and is induced by various stress stimuli. We sought to determine the role of KLF5 in colonic inflammation and recovery by studying mice with dextran sulfate sodium (DSS)-induced colitis. METHODS: Wild-type (WT) and Klf5(+/-) mice were given DSS in the drinking water to induce colitis. For recovery experiments, mice were given normal drinking water for 5 days after DSS administration. The extent of colitis was determined using established clinical and histological scoring systems. Immunohistochemical and immunoblotting analyses were used to examine proliferation, migration, and expression of the epidermal growth factor receptor. RESULTS: Klf5 expression was increased in colonic tissues of WT mice given DSS; induction of Klf5 was downstream of mitogen-activated protein kinase signaling. In DSS-induced colitis, Klf5(+/-) mice exhibited greater sensitivity to DSS than WT mice, with significantly higher clinical and histological colitis scores. In recovery experiments, Klf5(+/-) mice showed poor recovery, with continued weight loss and higher mortality than WT mice. Klf5(+/-) mice from the recovery period had reduced epithelial proliferation and cell migration at sites of ulceration compared to WT mice; these reductions correlated with reduced expression of epidermal growth factor receptor. CONCLUSIONS: Epithelial repair is an important aspect of recovery from DSS-induced colitis. The transcription factor KLF5 regulates mucosal healing through its effects on epithelial proliferation and migration.


Assuntos
Colite/fisiopatologia , Fatores de Transcrição Kruppel-Like/fisiologia , Regeneração , Animais , Movimento Celular , Proliferação de Células , Colite/induzido quimicamente , Colite/patologia , Colo/efeitos dos fármacos , Sulfato de Dextrana/farmacologia , Modelos Animais de Doenças , Receptores ErbB/análise , Feminino , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Fatores de Transcrição Kruppel-Like/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Quinases Ativadas por Mitógeno/análise
7.
Physiol Rev ; 90(4): 1337-81, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20959618

RESUMO

The Krüppel-like factor (KLF) family of transcription factors regulates diverse biological processes that include proliferation, differentiation, growth, development, survival, and responses to external stress. Seventeen mammalian KLFs have been identified, and numerous studies have been published that describe their basic biology and contribution to human diseases. KLF proteins have received much attention because of their involvement in the development and homeostasis of numerous organ systems. KLFs are critical regulators of physiological systems that include the cardiovascular, digestive, respiratory, hematological, and immune systems and are involved in disorders such as obesity, cardiovascular disease, cancer, and inflammatory conditions. Furthermore, KLFs play an important role in reprogramming somatic cells into induced pluripotent stem (iPS) cells and maintaining the pluripotent state of embryonic stem cells. As research on KLF proteins progresses, additional KLF functions and associations with disease are likely to be discovered. Here, we review the current knowledge of KLF proteins and describe common attributes of their biochemical and physiological functions and their pathophysiological roles.


Assuntos
Fatores de Transcrição Kruppel-Like/fisiologia , Sequência de Aminoácidos , Animais , Regulação da Expressão Gênica/fisiologia , Humanos , Fatores de Transcrição Kruppel-Like/química , Fatores de Transcrição Kruppel-Like/classificação , Filogenia
8.
J Biol Chem ; 285(36): 28298-308, 2010 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-20584900

RESUMO

The zinc finger transcription factor, Krüppel-like factor 4 (KLF4), regulates numerous biological processes, including proliferation, differentiation, and embryonic stem cell self-renewal. Although the DNA sequence to which KLF4 binds is established, the mechanism by which KLF4 controls transcription is not well defined. Small ubiquitin-related modifier (SUMO) is an important regulator of transcription. Here we show that KLF4 is both SUMOylated at a single lysine residue and physically interacts with SUMO-1 in a region that matches an acidic and hydrophobic residue-rich SUMO-interacting motif (SIM) consensus. The SIM in KLF4 is required for transactivation of target promoters in a SUMO-1-dependent manner. Mutation of either the acidic or hydrophobic residues in the SIM significantly impairs the ability of KLF4 to interact with SUMO-1, activate transcription, and inhibit cell proliferation. Our study provides direct evidence that SIM in KLF4 functions as a transcriptional activation domain. A survey of transcription factor sequences reveals that established transactivation domains of many transcription factors contain sequences highly related to SIM. These results, therefore, illustrate a novel mechanism by which SUMO interaction modulates the activity of transcription factors.


Assuntos
Fatores de Transcrição Kruppel-Like/química , Fatores de Transcrição Kruppel-Like/metabolismo , Proteína SUMO-1/metabolismo , Ativação Transcricional , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sítios de Ligação , Células COS , Bovinos , Linhagem Celular , Proliferação de Células , Chlorocebus aethiops , Técnicas de Silenciamento de Genes , Humanos , Fator 4 Semelhante a Kruppel , Lisina , Camundongos , Dados de Sequência Molecular , Estrutura Terciária de Proteína , RNA Interferente Pequeno/genética , Ratos , Proteína SUMO-1/deficiência , Proteína SUMO-1/genética
9.
Mol Cancer ; 9: 63, 2010 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-20298593

RESUMO

BACKGROUND: Both mutational inactivation of the adenomatous polyposis coli (APC) tumor suppressor gene and activation of the KRAS oncogene are implicated in the pathogenesis of colorectal cancer. Mice harboring a germline ApcMin mutation or intestine-specific expression of the KRASV12 gene have been developed. Both mouse strains develop spontaneous intestinal tumors, including adenoma and carcinoma, though at a different age. The zinc finger transcription factor Krüppel-like factor 5 (KLF5) has previously been shown to promote proliferation of intestinal epithelial cells and modulate intestinal tumorigenesis. Here we investigated the in vivo effect of Klf5 heterozygosity on the propensity of ApcMin/KRASV12 double transgenic mice to develop intestinal tumors. RESULTS: At 12 weeks of age, ApcMin/KRASV12 mice had three times as many intestinal tumors as ApcMin mice. This increase in tumor number was reduced by 92% in triple transgenic ApcMin/KRASV12/Klf5+/- mice. The reduction in tumor number in ApcMin/KRASV12/Klf5+/- mice was also statistically significant compared to ApcMin mice alone, with a 75% decrease. Compared with ApcMin/KRASV12, tumors from both ApcMin/KRASV12/Klf5+/- and ApcMin mice were smaller. In addition, tumors from ApcMin mice were more distally distributed in the intestine as contrasted by the more proximal distribution in ApcMin/KRASV12 and ApcMin/KRASV12/Klf5+/- mice. Klf5 levels in the normal-appearing intestinal mucosa were higher in both ApcMin and ApcMin/KRASV12 mice but were attenuated in ApcMin/KRASV12/Klf5+/- mice. The levels of beta-catenin, cyclin D1 and Ki-67 were also reduced in the normal-appearing intestinal mucosa of ApcMin/KRASV12/Klf5+/- mice when compared to ApcMin/KRASV12 mice. Levels of pMek and pErk1/2 were elevated in the normal-appearing mucosa of ApcMin/KRASV12 mice and modestly reduced in ApcMin/KRASV12/Klf5+/- mice. Tumor tissues displayed higher levels of both Klf5 and beta-catenin, irrespective of the mouse genotype from which tumors were derived. CONCLUSIONS: Results of the current study confirm the cumulative effect of Apc loss and oncogenic KRAS activation on intestinal tumorigenesis. The drastic reduction in tumor number and size due to Klf5 heterozygosity in ApcMin/KRASV12 mice indicate a critical function of KLF5 in modulating intestinal tumor initiation and progression.


Assuntos
Transformação Celular Neoplásica/genética , Neoplasias Colorretais/genética , Genes APC , Fatores de Transcrição Kruppel-Like/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Camundongos Transgênicos , Mutação , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
10.
Curr Colorectal Cancer Rep ; 5(2): 69-74, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19756239

RESUMO

Chronic inflammatory disorders are often associated with an increased risk of developing cancer. A classic example of the connection between inflammation and cancer is the increased risk of colorectal cancer in patients with inflammatory bowel disease (IBD). In this review, we discuss aspects of IBD that promote colorectal cancer and highlight key molecular mediators that contribute to cancer risk. Additionally, we report on progress in identifying molecular targets that may prove efficacious in blocking the progression of IBD-related inflammation to cancer.

11.
Cancer Res ; 69(10): 4125-33, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19435907

RESUMO

Inactivation of the tumor suppressor adenomatous polyposis coli, with the resultant activation of beta-catenin, is the initiating event in the development of a majority of colorectal cancers. Krüppel-like factor 5 (KLF5), a proproliferative transcription factor, is highly expressed in the proliferating intestinal crypt epithelial cells. To determine whether KLF5 contributes to intestinal adenoma formation, we examined tumor burdens in Apc(Min/+) mice and Apc(Min/+)/Klf5(+/-) mice. Compared with Apc(Min/+) mice, Apc(Min/+)/Klf5(+/-) mice had a 96% reduction in the number of intestinal adenomas. Reduced tumorigenicity in the Apc(Min/+)/Klf5(+/-) mice correlated with reduced levels and nuclear localization of beta-catenin as well as reduced expression of two beta-catenin targets, cyclin D1 and c-Myc. In vitro studies revealed a physical interaction between KLF5 and beta-catenin that enhanced the nuclear localization and transcriptional activity of beta-catenin. Thus, KLF5 is necessary for the tumor-initiating activity of beta-catenin during intestinal adenoma formation in Apc(Min/+) mice, and reduced expression of KLF5 offsets the tumor-initiating activity of the Apc(Min) mutation by reducing the nuclear localization and activity of beta-catenin.


Assuntos
Adenoma/prevenção & controle , Neoplasias Colorretais/genética , Genes APC , Neoplasias Intestinais/genética , Intestinos/fisiologia , Fatores de Transcrição Kruppel-Like/genética , Mutação , beta Catenina/genética , Adenoma/genética , Animais , Células COS , Núcleo Celular/patologia , Chlorocebus aethiops , DNA Nucleotidiltransferases/genética , Triagem de Portadores Genéticos , Haplótipos , Neoplasias Intestinais/prevenção & controle , Fatores de Transcrição Kruppel-Like/deficiência , Masculino , Camundongos , Camundongos Endogâmicos C57BL , beta Catenina/metabolismo
12.
J Biol Chem ; 283(46): 31991-2002, 2008 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-18782761

RESUMO

SUMOylation is a form of post-translational modification shown to control nuclear transport. Krüppel-like factor 5 (KLF5) is an important mediator of cell proliferation and is primarily localized to the nucleus. Here we show that mouse KLF5 is SUMOylated at lysine residues 151 and 202. Mutation of these two lysines or two conserved nearby glutamates results in the loss of SUMOylation and increased cytoplasmic distribution of KLF5, suggesting that SUMOylation enhances nuclear localization of KLF5. Lysine 151 is adjacent to a nuclear export signal (NES) that resembles a consensus NES. The NES in KLF5 directs a fused green fluorescence protein to the cytoplasm, binds the nuclear export receptor CRM1, and is inhibited by leptomycin and site-directed mutagenesis. SUMOylation facilitates nuclear localization of KLF5 by inhibiting this NES activity, and enhances the ability of KLF5 to stimulate anchorage-independent growth of HCT116 colon cancer cells. A survey of proteins whose nuclear localization is regulated by SUMOylation reveals that SUMOylation sites are frequently located in close proximity to NESs. A relatively common mechanism for SUMOylation to regulate nucleocytoplasmic transport may lie in the interplay between neighboring NES and SUMOylation motifs.


Assuntos
Núcleo Celular/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Proteína SUMO-1/metabolismo , Transporte Ativo do Núcleo Celular , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Linhagem Celular , Proliferação de Células , Chlorocebus aethiops , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Citoplasma/metabolismo , Humanos , Fatores de Transcrição Kruppel-Like/química , Fatores de Transcrição Kruppel-Like/genética , Dados de Sequência Molecular , Ligação Proteica , Alinhamento de Sequência
13.
Gastroenterology ; 134(4): 1007-16, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18395082

RESUMO

BACKGROUND & AIMS: Krüppel-like factor 5 (KLF5) is a transcription factor that is highly expressed in proliferating crypt cells of the intestinal epithelium. KLF5 has a pro-proliferative effect in vitro and is induced by mitogenic and stress stimuli. To determine whether KLF5 is involved in mediating proliferative responses to intestinal stressors in vivo, we examined its function in a mouse model of transmissible murine colonic hyperplasia triggered by colonization of the mouse colon by the bacteria Citrobacter rodentium. METHODS: Heterozygous Klf5 knockout (Klf5(+/-)) mice were generated from embryonic stem cells carrying an insertional disruption of the Klf5 gene. Klf5(+/-) mice or wild-type (WT) littermates were infected with C rodentium by oral gavage. At various time points postinfection, mice were killed and distal colons were harvested. Colonic crypt heights were determined morphometrically from sections stained with H&E. Frozen tissues were stained by immunofluorescence using antibodies against Klf5 and the proliferation marker, Ki67, to determine Klf5 expression and numbers of proliferating cells per crypt. RESULTS: Infection of WT mice with C rodentium resulted in a 2-fold increase in colonic crypt heights at 14 days postinfection and was accompanied by a 1.7-fold increase in Klf5 expression. Infection of Klf5(+/-) mice showed an attenuated induction of Klf5 expression, and hyperproliferative responses to C rodentium were reduced in the Klf5(+/-) animals as compared with WT littermates. CONCLUSION: Our study shows that Klf5 is a key mediator of crypt cell proliferation in the colon in response to pathogenic bacterial infection.


Assuntos
Citrobacter rodentium/isolamento & purificação , Colite/metabolismo , Colo/patologia , Infecções por Enterobacteriaceae/metabolismo , Fatores de Transcrição Kruppel-Like/fisiologia , Animais , Western Blotting , Proliferação de Células , Citrobacter rodentium/patogenicidade , Colite/genética , Colite/microbiologia , Colo/metabolismo , Colo/microbiologia , Modelos Animais de Doenças , Infecções por Enterobacteriaceae/genética , Infecções por Enterobacteriaceae/microbiologia , Expressão Gênica , Genótipo , Hiperplasia/etiologia , Hiperplasia/genética , Hiperplasia/patologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
Gastroenterology ; 134(1): 120-30, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18054006

RESUMO

BACKGROUND & AIMS: Krüppel-like factor 5 (KLF5) is a zinc finger-transcription factor that regulates cell proliferation. Oncogenic KRAS mutations are commonly found in colorectal cancers. We aimed to determine whether KLF5 mediates KRAS functions during intestinal tumorigenesis. METHODS: The effects of KLF5 on proliferation and transformation were examined in IEC-6 intestinal epithelial cells stably transfected with inducible KRAS(V12G). KLF5 expression was examined in intestinal tumors derived from transgenic mice expressing KRAS(V12G) under villin promoter and in human colorectal cancers with mutated KRAS. RESULTS: Induction of KRAS(V12G) in IEC-6 cells resulted in increased expression of KLF5, accompanied by increased rates of proliferation and anchorage-independent growth. Inhibition of KLF5 expression by mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK) inhibitors or KLF5-specific small interfering RNA reduced proliferation and anchorage-independent growth despite KRAS(V12G) induction. Human colorectal cancer cell lines with mutated KRAS contained high levels of KLF5 and reduction of KLF5 by MEK inhibitors or KLF5 small interfering RNA also led to reduced proliferation and transformation. In vivo, both intestinal tumors derived from mice transgenic for villin-KRAS(V12G) and human primary colorectal cancers with mutated KRAS contained high levels of KLF5 and increased staining of the proliferative marker Ki67. CONCLUSIONS: Elevated levels of KLF5 protein are strongly correlated with activating KRAS mutations in intestinal tumors in vitro and in vivo. Inhibition of KLF5 expression in tumor cells resulted in significantly reduced rates of proliferation and transforming activities. We conclude that KLF5 is an important mediator of oncogenic KRAS transforming functions during intestinal tumorigenesis.


Assuntos
Transformação Celular Neoplásica/patologia , Neoplasias Colorretais/etiologia , Células Epiteliais/fisiologia , Mucosa Intestinal/patologia , Fatores de Transcrição Kruppel-Like/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Proteínas ras/fisiologia , Animais , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/patologia , Humanos , Camundongos , Proteínas Proto-Oncogênicas p21(ras)
15.
Cancer Res ; 67(15): 7147-54, 2007 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-17671182

RESUMO

The zinc finger transcription factor Krüppel-like factor 4 (KLF4) is frequently down-regulated in colorectal cancer. Previous studies showed that the expression of KLF4 was activated by the colorectal cancer tumor suppressor adenomatous polyposis coli (APC) and that KLF4 repressed the Wnt/beta-catenin pathway. Here, we examined whether KLF4 plays a role in modulating intestinal tumorigenesis by comparing the tumor burdens in mice heterozygous for the Apc(Min) allele (Apc(Min/+)) and those heterozygous for both the Apc(Min) and Klf4 alleles (Klf4(+/-)/Apc(Min/+)). Between 10 and 20 weeks of age, Klf4(+/-)/Apc(Min/+) mice developed, on average, 59% more intestinal adenomas than Apc(Min/+) mice (P < 0.0001). Immunohistochemical staining showed that Klf4 protein levels were lower in the normal-appearing intestinal tissues of Klf4(+/-)/Apc(Min/+) mice compared with wild-type, Klf4(+/-), or Apc(Min/+) mice. In contrast, the levels of beta-catenin and cyclin D1 were higher in the normal-appearing intestinal tissues of Klf4(+/-)/Apc(Min/+) mice compared with the other three genotypes. Klf4 levels were further decreased in adenomas from both Apc(Min/+) and Klf4(+/-)/Apc(Min/+) mice compared with their corresponding normal-appearing tissues. Reverse transcription-PCR showed an inverse correlation between adenoma size and Klf4 mRNA levels in both Klf4(+/-)/Apc(Min/+) and Apc(Min/+) mice. There was also a progressive loss of heterozygosity of the wild-type Apc allele in adenomas with increasing size from Klf4(+/-)/Apc(Min/+) and Apc(Min/+) mice. Results from this study show that KLF4 plays an important role in promoting the development of intestinal adenomas in the presence of Apc(Min) mutation.


Assuntos
Polipose Adenomatosa do Colo/metabolismo , Transformação Celular Neoplásica/metabolismo , Neoplasias Intestinais/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Adenoma/genética , Adenoma/metabolismo , Adenoma/patologia , Polipose Adenomatosa do Colo/genética , Polipose Adenomatosa do Colo/patologia , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Ciclina D , Ciclinas/genética , Ciclinas/metabolismo , Feminino , Técnicas Imunoenzimáticas , Neoplasias Intestinais/genética , Neoplasias Intestinais/patologia , Pólipos Intestinais/genética , Pólipos Intestinais/metabolismo , Pólipos Intestinais/patologia , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Perda de Heterozigosidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/metabolismo , beta Catenina/metabolismo
16.
Bioessays ; 29(6): 549-57, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17508399

RESUMO

The Krüppel-like factors (KLFs) comprise a family of evolutionarily conserved zinc finger transcription factors that regulate numerous biological processes including proliferation, differentiation, development and apoptosis. KLF4 and KLF5 are two closely related members of this family and are both highly expressed in epithelial tissues. In the intestinal epithelium, KLF4 is expressed in terminally differentiated epithelial cells at the villus borders of the mucosa and inhibits cell growth, while KLF5 is expressed in proliferating epithelial cells at the base of the intestinal crypts and promotes cell growth. KLF4 and KLF5 respond to a myriad of external stress stimuli and are likely involved in restoring cellular homeostasis following exposure to stressors. Confirming their importance in maintaining tissue integrity, KLF4 and KLF5 are both dysregulated in various types of cancer. Here we review the recent advances in defining the physiological and pathobiological roles of KLF4 and KLF5, focusing on their functions in the intestinal epithelium.


Assuntos
Mucosa Intestinal , Fatores de Transcrição Kruppel-Like/metabolismo , Animais , Apoptose/fisiologia , Ciclo Celular/fisiologia , Diferenciação Celular/fisiologia , Proliferação de Células , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Mucosa Intestinal/fisiologia , Fator 4 Semelhante a Kruppel , Neoplasias/metabolismo
17.
Nucleic Acids Res ; 34(4): 1216-23, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16500892

RESUMO

Lipopolysaccharide (LPS) is a bacterially-derived endotoxin that elicits a strong proinflammatory response in intestinal epithelial cells. It is well established that LPS activates this response through NF-kappaB. In addition, LPS signals through the mitogen-activated protein kinase (MAPK) pathway. We previously demonstrated that the Krüppel-like factor 5 [KLF5; also known as intestine-enriched Krüppel-like factor (IKLF)] is activated by the MAPK. In the current study, we examined whether KLF5 mediates the signaling cascade elicited by LPS. Treatment of the intestinal epithelial cell line, IEC6, with LPS resulted in a dose- and time-dependent increase in KLF5 messenger RNA (mRNA) and protein levels. Concurrently, mRNA levels of the p50 and p65 subunits of NF-kappaB were increased by LPS treatment. Pretreatment with the MAPK inhibitor, U0126, or the LPS antagonist, polymyxin B, resulted in an attenuation of KLF5, p50 and p65 NF-kappaB subunit mRNA levels from LPS treatment. Importantly, suppression of KLF5 by small interfering RNA (siRNA) resulted in a reduction in p50 and p65 subunit mRNA levels and NF-kappaB DNA binding activity in response to LPS. LPS treatment also led to an increase in secretion of TNF-alpha and IL-6 from IEC6, both of which were reduced by siRNA inhibition of KLF5. In addition, intercellular adhesion molecule-1 (ICAM-1) levels were increased in LPS-treated IEC6 cells and this increase was associated with increased adhesion of Jurkat lymphocytes to IEC6. The induction of ICAM-1 expression and T cell adhesion to IEC6 by LPS were both abrogated by siRNA inhibition of KLF5. These results indicate that KLF5 is an important mediator for the proinflammatory response elicited by LPS in intestinal epithelial cells.


Assuntos
Mediadores da Inflamação/metabolismo , Mucosa Intestinal/imunologia , Fatores de Transcrição Kruppel-Like/fisiologia , Lipopolissacarídeos/farmacologia , Animais , Adesão Celular , Linhagem Celular , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Humanos , Molécula 1 de Adesão Intercelular/biossíntese , Interleucina-6/metabolismo , Mucosa Intestinal/citologia , Células Jurkat , Fatores de Transcrição Kruppel-Like/antagonistas & inibidores , Fatores de Transcrição Kruppel-Like/genética , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Interferência de RNA , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...