Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chembiochem ; 25(6): e202300762, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38294275

RESUMO

Precise information regarding the interaction between proteins and ligands at molecular resolution is crucial for effectively guiding the optimization process from initial hits to lead compounds in early stages of drug development. In this study, we introduce a novel aliphatic side chain isotope-labeling scheme to directly probe interactions between ligands and aliphatic sidechains using NMR techniques. To demonstrate the applicability of this method, we selected a set of Brd4-BD1 binders and analyzed 1 H chemical shift perturbation resulting from CH-π interaction of Hß -Val and Hγ -Leu as CH donors with corresponding ligand aromatic moieties as π acceptors.


Assuntos
Proteínas Nucleares , Valina , Leucina/química , Valina/química , Ligantes , Fatores de Transcrição
2.
J Biomol NMR ; 78(1): 1-8, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37816933

RESUMO

In this study, we present the synthesis and incorporation of a metabolic isoleucine precursor compound for selective methylene labeling. The utility of this novel α-ketoacid isotopologue is shown by incorporation into the protein Brd4-BD1, which regulates gene expression by binding to acetylated histones. High quality single quantum 13C-1 H-HSQC were obtained, as well as triple quantum HTQC spectra, which are superior in terms of significantly increased 13C-T2 times. Additionally, large chemical shift perturbations upon ligand binding were observed. Our study thus proves the great sensitivity of this precursor as a reporter for side-chain dynamic studies and for investigations of CH-π interactions in protein-ligand complexes.


Assuntos
Isoleucina , Fatores de Transcrição , Fatores de Transcrição/química , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligantes , Ressonância Magnética Nuclear Biomolecular
3.
Chemphyschem ; 25(1): e202300636, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37955910

RESUMO

The availability of high-resolution 3D structural information is crucial for investigating guest-host systems across a wide range of fields. In the context of drug discovery, the information is routinely used to establish and validate structure-activity relationships, grow initial hits from screening campaigns, and to guide molecular docking. For the generation of protein-ligand complex structural information, X-ray crystallography is the experimental method of choice, however, with limited information on protein flexibility. An experimentally verified structural model of the binding interface in the native solution-state would support medicinal chemists in their molecular design decisions. Here we demonstrate that protein-bound ligand 1 H NMR chemical shifts are highly sensitive and accurate probes for the immediate chemical environment of protein-ligand interfaces. By comparing the experimental ligand 1 H chemical shift values with those computed from the X-ray structure using quantum mechanics methodology, we identify significant disagreements for parts of the ligand between the two experimental techniques. We show that quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) ensembles can be used to refine initial X-ray co-crystal structures resulting in a better agreement with experimental 1 H ligand chemical shift values. Overall, our findings highlight the usefulness of ligand 1 H NMR chemical shift information in combination with a QM/MM MD workflow for generating protein-ligand ensembles that accurately reproduce solution structural data.


Assuntos
Imageamento por Ressonância Magnética , Proteínas , Simulação de Acoplamento Molecular , Ligantes , Espectroscopia de Ressonância Magnética/métodos , Proteínas/química
4.
Nature ; 619(7968): 160-166, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37258666

RESUMO

KRAS is one of the most commonly mutated proteins in cancer, and efforts to directly inhibit its function have been continuing for decades. The most successful of these has been the development of covalent allele-specific inhibitors that trap KRAS G12C in its inactive conformation and suppress tumour growth in patients1-7. Whether inactive-state selective inhibition can be used to therapeutically target non-G12C KRAS mutants remains under investigation. Here we report the discovery and characterization of a non-covalent inhibitor that binds preferentially and with high affinity to the inactive state of KRAS while sparing NRAS and HRAS. Although limited to only a few amino acids, the evolutionary divergence in the GTPase domain of RAS isoforms was sufficient to impart orthosteric and allosteric constraints for KRAS selectivity. The inhibitor blocked nucleotide exchange to prevent the activation of wild-type KRAS and a broad range of KRAS mutants, including G12A/C/D/F/V/S, G13C/D, V14I, L19F, Q22K, D33E, Q61H, K117N and A146V/T. Inhibition of downstream signalling and proliferation was restricted to cancer cells harbouring mutant KRAS, and drug treatment suppressed KRAS mutant tumour growth in mice, without having a detrimental effect on animal weight. Our study suggests that most KRAS oncoproteins cycle between an active state and an inactive state in cancer cells and are dependent on nucleotide exchange for activation. Pan-KRAS inhibitors, such as the one described here, have broad therapeutic implications and merit clinical investigation in patients with KRAS-driven cancers.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas p21(ras) , Transdução de Sinais , Animais , Camundongos , Peso Corporal , Ativação Enzimática , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Nucleotídeos/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Especificidade por Substrato
5.
J Med Chem ; 65(21): 14614-14629, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36300829

RESUMO

Activating mutations in KRAS are the most frequent oncogenic alterations in cancer. The oncogenic hotspot position 12, located at the lip of the switch II pocket, offers a covalent attachment point for KRASG12C inhibitors. To date, KRASG12C inhibitors have been discovered by first covalently binding to the cysteine at position 12 and then optimizing pocket binding. We report on the discovery of the in vivo active KRASG12C inhibitor BI-0474 using a different approach, in which small molecules that bind reversibly to the switch II pocket were identified and then optimized for non-covalent binding using structure-based design. Finally, the Michael acceptor containing warhead was attached. Our approach offers not only an alternative approach to discovering KRASG12C inhibitors but also provides a starting point for the discovery of inhibitors against other oncogenic KRAS mutants.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Genes ras , Mutação , Neoplasias/genética , Cisteína
6.
Nat Cancer ; 3(7): 821-836, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35883003

RESUMO

Oncogenic alterations in human epidermal growth factor receptor 2 (HER2) occur in approximately 2% of patients with non-small cell lung cancer and predominantly affect the tyrosine kinase domain and cluster in exon 20 of the ERBB2 gene. Most clinical-grade tyrosine kinase inhibitors are limited by either insufficient selectivity against wild-type (WT) epidermal growth factor receptor (EGFR), which is a major cause of dose-limiting toxicity or by potency against HER2 exon 20 mutant variants. Here we report the discovery of covalent tyrosine kinase inhibitors that potently inhibit HER2 exon 20 mutants while sparing WT EGFR, which reduce tumor cell survival and proliferation in vitro and result in regressions in preclinical xenograft models of HER2 exon 20 mutant non-small cell lung cancer, concomitant with inhibition of downstream HER2 signaling. Our results suggest that HER2 exon 20 insertion-driven tumors can be effectively treated by a potent and highly selective HER2 inhibitor while sparing WT EGFR, paving the way for clinical translation.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Receptores ErbB/genética , Éxons/genética , Genes erbB-2 , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Receptor ErbB-2/genética
7.
J Med Chem ; 64(22): 16319-16327, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34784474

RESUMO

At the heart of drug design is the discovery of molecules that bind with high affinity to their drug targets. Biotin forms the strongest known noncovalent ligand-protein interactions with avidin and streptavidin, achieving femtomolar and picomolar affinities, respectively. This is made even more exceptional because biotin achieves this with a meagre molecular weight of 240 Da. Surprisingly, the approaches by which biotin achieves this are not in the standard repertoire of current medicinal chemistry practice. Biotin's biggest lesson is the importance of nonclassical H-bonds in protein-ligand complexes. Most of biotin's affinity stems from its flexible valeric acid side chain that forms CH-π, CH-O, and classical H-bonds with the lipophilic region of the binding pocket. Biotin also utilizes an oxyanion hole, a sulfur-centered H-bond, and water solvation in the bound state to achieve its potency. The facets and advantages of biotin's approach to binding should be more widely adopted in drug design.


Assuntos
Biotina/química , Desenho de Fármacos , Sítios de Ligação , Ligação de Hidrogênio , Estrutura Molecular , Ácidos Pentanoicos/química , Estreptavidina/química
8.
ChemMedChem ; 16(23): 3576-3587, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34524728

RESUMO

The NRF2 transcription factor is a key regulator in cellular oxidative stress response, and acts as a tumor suppressor. Aberrant activation of NRF2 has been implicated in promoting chemo-resistance, tumor growth, and metastasis by activating its downstream target genes. Hence, inhibition of NRF2 promises to be an attractive therapeutic strategy to suppress cell proliferation and enhance cell apoptosis in cancer. Direct targeting of NRF2 with small-molecules to discover protein-DNA interaction inhibitors is challenging as it is a largely intrinsically disordered protein. To discover molecules that bind to NRF2 at the DNA binding interface, we performed an NMR-based fragment screen against its DNA-binding domain. We discovered several weakly binding fragment hits that bind to a region overlapping with the DNA binding site. Using SAR by catalogue we developed an initial structure-activity relationship for the most interesting initial hit series. By combining NMR chemical shift perturbations and data-driven docking, binding poses which agreed with NMR information and the observed SAR were elucidated. The herein discovered NRF2 hits and proposed binding modes form the basis for future structure-based optimization campaigns on this important but to date 'undrugged' cancer driver.


Assuntos
DNA/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Ligação Proteica/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Sítios de Ligação , DNA/metabolismo , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Fator 2 Relacionado a NF-E2/química , Fator 2 Relacionado a NF-E2/metabolismo , Ressonância Magnética Nuclear Biomolecular , Domínios Proteicos , Relação Estrutura-Atividade
9.
Curr Opin Struct Biol ; 71: 136-147, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34303932

RESUMO

It has taken four decades of research to see the first major breakthrough for KRAS-driven cancers. In particular, the last decade has seen a paradigm shift with the discovery of druggable pockets on KRAS and clinical efficacy with covalent KRASG12C inhibitors, culminating in the first approval of sotorasib monotherapy as second-line treatment in KRASG12C-driven non-small-cell lung cancer. Nevertheless, 85% of all KRAS-mutated cancers still lack novel agents. In this review, we will outline the structure, function, and post-translational modifications of KRAS and highlight the various approaches being adopted to drug KRAS, ranging from selective to pan concepts. The range of molecular modalities being explored, including PROTACs and glues, will also be described. Finally, an outlook toward the next wave of KRAS drugs and the challenges of resistance will be given.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética
10.
Curr Opin Chem Biol ; 62: 109-118, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33848766

RESUMO

Son of Sevenless (SOS) is a guanine nucleotide exchange factor that activates the important cell signaling switch KRAS. SOS acts as a pacemaker for KRAS, the beating heart of cancer, by catalyzing the "beating" from the KRAS(off) to the KRAS(on) conformation. Activating mutations in SOS1 are common in Noonan syndrome and oncogenic alterations in KRAS drive 1 in seven human cancers. Promising clinical efficacy has been observed for selective KRASG12C inhibitors, but the vast majority of oncogenic KRAS alterations remain undrugged. The discovery of a druggable pocket on SOS1 has led to potent SOS1 inhibitors such as BI-3406. SOS1 inhibition leads to antiproliferative effects against all major KRAS mutants. The first SOS1 inhibitor has entered clinical trials for KRAS-mutated cancers. In this review, we provide an overview of SOS1 function, its association with cancer and RASopathies, known SOS1 activators and inhibitors, and a future perspective is provided.


Assuntos
Antineoplásicos/química , Proteínas Mutantes/química , Neoplasias/terapia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteína SOS1/antagonistas & inibidores , Acetonitrilas/farmacologia , Antineoplásicos/farmacologia , Regulação da Expressão Gênica , Humanos , Mutação , Marca-Passo Artificial , Piperazinas/farmacologia , Conformação Proteica , Piridinas/farmacologia , Pirimidinas/farmacologia , Proteína SOS1/metabolismo , Transdução de Sinais , Relação Estrutura-Atividade
11.
Curr Opin Pharmacol ; 57: 175-183, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33799000

RESUMO

Small-molecule targeted protein degraders have in recent years made a great impact on the strategies of many industry and academic cancer research endeavours. We seek here to provide a concise perspective on the opportunities and challenges that lie ahead for bifunctional degrader molecules, so-called 'Proteolysis Targeting Chimeras (PROTACs),' in the context of cancer therapy. We highlight high-profile studies that support the potential for PROTAC approaches to broaden drug target scope, address drug resistance, enhance target selectivity and provide tissue specificity, but also assess where the modality is yet to fully deliver in these contexts. Future opportunities presented by the unique bifunctional nature of these molecules are also discussed.


Assuntos
Reagentes de Ligações Cruzadas , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Proteólise , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/farmacologia
12.
J Med Chem ; 64(10): 6569-6580, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33719426

RESUMO

KRAS, the most common oncogenic driver in human cancers, is controlled and signals primarily through protein-protein interactions (PPIs). The interaction between KRAS and SOS1, crucial for the activation of KRAS, is a typical, challenging PPI with a large contact surface area and high affinity. Here, we report that the addition of only one atom placed between Y884SOS1 and A73KRAS is sufficient to convert SOS1 activators into SOS1 inhibitors. We also disclose the discovery of BI-3406. Combination with the upstream EGFR inhibitor afatinib shows in vivo efficacy against KRASG13D mutant colorectal tumor cells, demonstrating the utility of BI-3406 to probe SOS1 biology. These findings challenge the dogma that large molecules are required to disrupt challenging PPIs. Instead, a "foot in the door" approach, whereby single atoms or small functional groups placed between key PPI interactions, can lead to potent inhibitors even for challenging PPIs such as SOS1-KRAS.


Assuntos
Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteína SOS1/metabolismo , Afatinib/química , Afatinib/metabolismo , Afatinib/uso terapêutico , Regulação Alostérica/efeitos dos fármacos , Sítios de Ligação , Domínio Catalítico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Humanos , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Mapas de Interação de Proteínas/efeitos dos fármacos , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética , Quinazolinas/química , Quinazolinas/metabolismo , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico , Proteína SOS1/agonistas , Proteína SOS1/antagonistas & inibidores , Proteína SOS1/genética
13.
Cancer Discov ; 11(1): 142-157, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32816843

RESUMO

KRAS is the most frequently mutated driver of pancreatic, colorectal, and non-small cell lung cancers. Direct KRAS blockade has proved challenging, and inhibition of a key downstream effector pathway, the RAF-MEK-ERK cascade, has shown limited success because of activation of feedback networks that keep the pathway in check. We hypothesized that inhibiting SOS1, a KRAS activator and important feedback node, represents an effective approach to treat KRAS-driven cancers. We report the discovery of a highly potent, selective, and orally bioavailable small-molecule SOS1 inhibitor, BI-3406, that binds to the catalytic domain of SOS1, thereby preventing the interaction with KRAS. BI-3406 reduces formation of GTP-loaded RAS and limits cellular proliferation of a broad range of KRAS-driven cancers. Importantly, BI-3406 attenuates feedback reactivation induced by MEK inhibitors and thereby enhances sensitivity of KRAS-dependent cancers to MEK inhibition. Combined SOS1 and MEK inhibition represents a novel and effective therapeutic concept to address KRAS-driven tumors. SIGNIFICANCE: To date, there are no effective targeted pan-KRAS therapies. In-depth characterization of BI-3406 activity and identification of MEK inhibitors as effective combination partners provide an attractive therapeutic concept for the majority of KRAS-mutant cancers, including those fueled by the most prevalent mutant KRAS oncoproteins, G12D, G12V, G12C, and G13D.See related commentary by Zhao et al., p. 17.This article is highlighted in the In This Issue feature, p. 1.


Assuntos
Neoplasias Pulmonares , Proteínas Proto-Oncogênicas p21(ras) , Linhagem Celular Tumoral , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno , Mutação , Nucleotídeos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/genética
14.
ChemMedChem ; 16(9): 1420-1424, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33275320

RESUMO

Aberrant WNT pathway activation, leading to nuclear accumulation of ß-catenin, is a key oncogenic driver event. Mutations in the tumor suppressor gene APC lead to impaired proteasomal degradation of ß-catenin and subsequent nuclear translocation. Restoring cellular degradation of ß-catenin represents a potential therapeutic strategy. Here, we report the fragment-based discovery of a small molecule binder to ß-catenin, including the structural elucidation of the binding mode by X-ray crystallography. The difficulty in drugging ß-catenin was confirmed as the primary screening campaigns identified only few and very weak hits. Iterative virtual and NMR screening techniques were required to discover a compound with sufficient potency to be able to obtain an X-ray co-crystal structure. The binding site is located between armadillo repeats two and three, adjacent to the BCL9 and TCF4 binding sites. Genetic studies show that it is unlikely to be useful for the development of protein-protein interaction inhibitors but structural information and established assays provide a solid basis for a prospective optimization towards ß-catenin proteolysis targeting chimeras (PROTACs) as alternative modality.


Assuntos
Bibliotecas de Moléculas Pequenas/química , beta Catenina/antagonistas & inibidores , Sítios de Ligação , Cristalografia por Raios X , Humanos , Simulação de Dinâmica Molecular , Mapas de Interação de Proteínas/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade , beta Catenina/metabolismo
16.
Future Med Chem ; 12(21): 1911-1923, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32779487

RESUMO

Activating mutations in the three human RAS genes, KRAS, NRAS and HRAS, are among the most common oncogenic drivers in human cancers. Covalent KRASG12C inhibitors, which bind to the switch II pocket in the 'off state' of KRAS, represent the first direct KRAS drugs that entered human clinical trials. However, the remaining 85% of non-KRASG12C-driven cancers remain undrugged as do NRAS and HRAS and no drugs targeting the 'on state' have been discovered so far. The switch I/II pocket is a second pocket for which the nanomolar inhibitor BI-2852 has been discovered. Here, we elucidate inhibitor binding modes in KRAS, NRAS and HRAS on and off and discuss future strategies to drug all RAS isoforms with this one pocket.


Assuntos
Inibidores Enzimáticos/farmacologia , Isoenzimas/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Proteínas ras/antagonistas & inibidores , Inibidores Enzimáticos/química , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Neoplasias/enzimologia , Proteínas ras/genética , Proteínas ras/metabolismo
17.
Angew Chem Int Ed Engl ; 59(35): 14861-14868, 2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32421895

RESUMO

While CH-π interactions with target proteins are crucial determinants for the affinity of arguably every drug molecule, no method exists to directly measure the strength of individual CH-π interactions in drug-protein complexes. Herein, we present a fast and reliable methodology called PI (π interactions) by NMR, which can differentiate the strength of protein-ligand CH-π interactions in solution. By combining selective amino-acid side-chain labeling with 1 H-13 C NMR, we are able to identify specific protein protons of side-chains engaged in CH-π interactions with aromatic ring systems of a ligand, based solely on 1 H chemical-shift values of the interacting protein aromatic ring protons. The information encoded in the chemical shifts induced by such interactions serves as a proxy for the strength of each individual CH-π interaction. PI by NMR changes the paradigm by which chemists can optimize the potency of drug candidates: direct determination of individual π interactions rather than averaged measures of all interactions.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Proteínas/química , Humanos , Modelos Moleculares
18.
Oncotarget ; 11(9): 875-890, 2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32180900

RESUMO

Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphomas worldwide and is characterized by a high diversity of genetic and molecular alterations. Chromosomal translocations and mutations leading to deregulated expression of the transcriptional repressor BCL6 occur in a significant fraction of DLBCL patients. An oncogenic role of BCL6 in the initiation of DLBCL has been shown as the constitutive expression of BCL6 in mice recapitulates the pathogenesis of human DLBCL. However, the role of BCL6 in tumor maintenance remains poorly investigated due to the absence of suitable genetic models and limitations of pharmacological inhibitors. Here, we have utilized tetracycline-inducible CRISPR/Cas9 mutagenesis to study the consequences of BCL6 deletion in established DLBCL models in culture and in vivo. We show that BCL6 knock-out in SU-DHL-4 cells in vitro results in an anti-proliferative response 4-7 days after Cas9 induction that was characterized by cell cycle (G1) arrest. Conditional BCL6 deletion in established DLBCL tumors in vivo induced a significant tumor growth inhibition with initial tumor stasis followed by slow tumor growth kinetics. Our findings support a role of BCL6 in the maintenance of lymphoma growth and showcase the utility of inducible CRISPR/Cas9 systems for probing oncogene addiction.

19.
Mol Cancer Ther ; 19(4): 1018-1030, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32024684

RESUMO

Natural killer (NK) cells play a pivotal role in controlling cancer. Multiple extracellular receptors and internal signaling nodes tightly regulate NK activation. Cyclin-dependent kinases of the mediator complex (CDK8 and CDK19) were described as a signaling intermediates in NK cells. Here, we report for the first time the development and use of CDK8/19 inhibitors to suppress phosphorylation of STAT1S727 in NK cells and to augment the production of the cytolytic molecules perforin and granzyme B (GZMB). Functionally, this resulted in enhanced NK-cell-mediated lysis of primary leukemia cells. Treatment with the CDK8/19 inhibitor BI-1347 increased the response rate and survival of mice bearing melanoma and breast cancer xenografts. In addition, CDK8/19 inhibition augmented the antitumoral activity of anti-PD-1 antibody and SMAC mimetic therapy, both agents that promote T-cell-mediated antitumor immunity. Treatment with the SMAC mimetic compound BI-8382 resulted in an increased number of NK cells infiltrating EMT6 tumors. Combination of the CDK8/19 inhibitor BI-1347, which augments the amount of degranulation enzymes, with the SMAC mimetic BI-8382 resulted in increased survival of mice carrying the EMT6 breast cancer model. The observed survival benefit was dependent on an intermittent treatment schedule of BI-1347, suggesting the importance of circumventing a hyporesponsive state of NK cells. These results suggest that CDK8/19 inhibitors can be combined with modulators of the adaptive immune system to inhibit the growth of solid tumors, independent of their activity on cancer cells, but rather through promoting NK-cell function.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Quinase 8 Dependente de Ciclina/antagonistas & inibidores , Quinases Ciclina-Dependentes/antagonistas & inibidores , Células Matadoras Naturais/imunologia , Leucemia Mieloide Aguda/tratamento farmacológico , Melanoma Experimental/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Animais , Apoptose , Neoplasias da Mama/enzimologia , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Proliferação de Células , Citotoxicidade Imunológica/imunologia , Feminino , Humanos , Células Matadoras Naturais/efeitos dos fármacos , Leucemia Mieloide Aguda/enzimologia , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/patologia , Melanoma Experimental/enzimologia , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Fosforilação , Fator de Transcrição STAT1/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...