Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JHEP Rep ; 6(7): 101069, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38966234

RESUMO

Background & Aims: The lymphatic system plays crucial roles in maintaining fluid balance and immune regulation. Studying the liver lymphatics has been considered challenging, as common lymphatic endothelial cell (LyEC) markers are expressed by other liver cells. Additionally, isolation of sufficient numbers of LyECs has been challenging because of their extremely low abundance (<0.01% of entire liver cell population) in a normal liver. Methods: Potential LyEC markers was identified using our published single-cell RNA sequencing (scRNA-seq) dataset (GSE147581) in mouse livers. Interleukin-7 (IL7) promoter-driven green fluorescent protein knock-in heterozygous mice were used for the validation of IL7 expression in LyECs in the liver, for the development of liver LyEC isolation protocol, and generating liver ischemia/reperfusion (I/R) injury. Scanning electron microscopy was used for the structural analysis of LyECs. Changes in LyEC phenotypes in livers of mice with I/R were determined by RNA-seq analysis. Results: Through scRNA-seq analysis, we have identified IL7 as an exclusive marker for liver LyECs, with no overlap with other liver cell types. Based on IL7 expression in liver LyECs, we have established an LyEC isolation method and observed distinct cell surface structures of LyECs with fenestrae and cellular pores (ranging from 100 to 400 nm in diameter). Furthermore, we identified LyEC genes that undergo alterations during I/R liver injuries. Conclusions: This study not only identified IL7 as an exclusively expressed gene in liver LyECs, but also enhanced our understanding of LyEC structures and demonstrated transcriptomic changes in injured livers. Impact and implications: Understanding the lymphatic system in the liver is challenging because of the absence of specific markers for liver LyEC. This study has identified IL7 as a reliable marker for LyECs, enabling the development of an effective method for their isolation, elucidating their unique cell surface structure, and identifying LyEC genes that undergo changes during liver damage. The development of IL7 antibodies for detecting it in human liver specimens will further advance our understanding of the liver lymphatic system in the future.

2.
Aust J Rural Health ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38924584

RESUMO

AIMS: This article explores the crucial role of 'place' as an ecological, social and cultural determinant of health and well-being, with a focus on the benefits and challenges of living rurally and remotely in Australia. CONTEXT: The health system, including health promotion, can contribute actively to creating supportive environments and places that foster health and well-being among individuals residing in rural and remote locations. For First Nations peoples, living on Country, and caring for Country and its people, are core to Indigenous worldviews, and the promotion of Aboriginal and Torres Strait Islander health and well-being. Their forced removal from ancestral lands has been catastrophic. For all people, living in rural and remote areas can deliver an abundance of the elements that contribute to a 'liveable' community, including access to fresh air, green and blue space, agricultural employment, tight-knit communities, a sense of belonging and identity, and social capital. However, living remotely also can limit access to employment opportunities, clean water, affordable food, reliable transport, social infrastructure, social networks and preventive health services. 'Place' is a critical enabler of maintaining a healthy life. However, current trends have led to a reduction in local services and resources, and increased exposure to the impacts of climate change. APPROACH: This commentary suggests ideas and strategies through which people in rural and remote locations can strengthen the liveability, resilience and identity of their communities, and regain access to essential health care and health promotion services and resources. CONCLUSION: Recommended strategies include online access to education, employment and telehealth; flexible provision of social infrastructure; and meaningful and responsive university-health service partnerships.

3.
Elife ; 132024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38805545

RESUMO

As the most common degenerative joint disease, osteoarthritis (OA) contributes significantly to pain and disability during aging. Several genes of interest involved in articular cartilage damage in OA have been identified. However, the direct causes of OA are poorly understood. Evaluating the public human RNA-seq dataset showed that CBFB (subunit of a heterodimeric Cbfß/Runx1, Runx2, or Runx3 complex) expression is decreased in the cartilage of patients with OA. Here, we found that the chondrocyte-specific deletion of Cbfb in tamoxifen-induced Cbfbf/f;Col2a1-CreERT mice caused a spontaneous OA phenotype, worn articular cartilage, increased inflammation, and osteophytes. RNA-sequencing analysis showed that Cbfß deficiency in articular cartilage resulted in reduced cartilage regeneration, increased canonical Wnt signaling and inflammatory response, and decreased Hippo/Yap signaling and Tgfß signaling. Immunostaining and western blot validated these RNA-seq analysis results. ACLT surgery-induced OA decreased Cbfß and Yap expression and increased active ß-catenin expression in articular cartilage, while local AAV-mediated Cbfb overexpression promoted Yap expression and diminished active ß-catenin expression in OA lesions. Remarkably, AAV-mediated Cbfb overexpression in knee joints of mice with OA showed the significant protective effect of Cbfß on articular cartilage in the ACLT OA mouse model. Overall, this study, using loss-of-function and gain-of-function approaches, uncovered that low expression of Cbfß may be the cause of OA. Moreover, Local admission of Cbfb may rescue and protect OA through decreasing Wnt/ß-catenin signaling, and increasing Hippo/Yap signaling and Tgfß/Smad2/3 signaling in OA articular cartilage, indicating that local Cbfb overexpression could be an effective strategy for treatment of OA.


Assuntos
Cartilagem Articular , Via de Sinalização Hippo , Homeostase , Osteoartrite , Fator de Crescimento Transformador beta , Proteínas de Sinalização YAP , Animais , Cartilagem Articular/metabolismo , Camundongos , Osteoartrite/genética , Osteoartrite/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/genética , Proteínas de Sinalização YAP/metabolismo , Proteínas de Sinalização YAP/genética , Via de Sinalização Wnt , beta Catenina/metabolismo , beta Catenina/genética , Transdução de Sinais , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética
4.
ACS Omega ; 9(11): 13447-13457, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38524494

RESUMO

Herein, we report a general route for the uniform coating of hard carbon (HC) powders via fluidized bed chemical vapor deposition. Carbon-based fine powders are excellent substrate materials for many catalytic and electrochemical applications but intrinsically difficult to fluidize and prone to elutriation. The reactor was designed to achieve as much retention of powders as possible, supported by a computational fluid dynamics study to assess the hydrodynamic behavior for varying gaseous flow rates. Solutions of the tin seleno- and thio-ether complexes [SnCl4{nBuSe(CH2)3SenBu}] and [SnCl4{nBuS(CH2)3SnBu}] were used as single source precursors and injected at high temperature into a fluidized bed of HC powders under nitrogen flow. The method allowed for the synthesis of HC-SnSx-SnSe2 composites at the gram scale with potential applications in electrocatalysis and sodium-ion battery anodes.

5.
bioRxiv ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38293189

RESUMO

As the most common degenerative joint disease, osteoarthritis (OA) contributes significantly to pain and disability during aging. Several genes of interest involved in articular cartilage damage in OA have been identified. However, the direct causes of OA are poorly understood. Evaluating the public human RNA-seq dataset showed that Cbfß, (subunit of a heterodimeric Cbfß/Runx1,Runx2, or Runx3 complex) expression is decreased in the cartilage of patients with OA. Here, we found that the chondrocyte-specific deletion of Cbfß in tamoxifen-induced Cbfßf/fCol2α1-CreERT mice caused a spontaneous OA phenotype, worn articular cartilage, increased inflammation, and osteophytes. RNA-sequencing analysis showed that Cbfß deficiency in articular cartilage resulted in reduced cartilage regeneration, increased canonical Wnt signaling and inflammatory response, and decreased Hippo/YAP signaling and TGF-ß signaling. Immunostaining and western blot validated these RNA-seq analysis results. ACLT surgery-induced OA decreased Cbfß and Yap expression and increased active ß-catenin expression in articular cartilage, while local AAV-mediated Cbfß overexpression promoted Yap expression and diminished active ß-catenin expression in OA lesions. Remarkably, AAV-mediated Cbfß overexpression in knee joints of mice with OA showed the significant protective effect of Cbfß on articular cartilage in the ACLT OA mouse model. Overall, this study, using loss-of-function and gain-of-function approaches, uncovered that low expression of Cbfß may be the cause of OA. Moreover, Local admission of Cbfß may rescue and protect OA through decreasing Wnt/ß-catenin signaling, and increasing Hippo/Yap signaling and TGFß/Smad2/3 signaling in OA articular cartilage, indicating that local Cbfß overexpression could be an effective strategy for treatment of OA.

6.
Am J Pathol ; 193(12): 2182-2202, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37673329

RESUMO

Liver is the largest lymph-producing organ. In cirrhotic patients, lymph production significantly increases concomitant with lymphangiogenesis. The aim of this study was to determine the mechanism of lymphangiogenesis in liver and its implication in liver fibrosis. Liver biopsies from portal hypertensive patients with portal-sinusoidal vascular disease (n = 22) and liver cirrhosis (n = 5) were evaluated for lymphangiogenesis and compared with controls (n = 9 and n = 6, respectively). For mechanistic studies, rats with partial portal vein ligation (PPVL) and bile duct ligation (BDL) were used. A gene profile data set (GSE77627), including 14 histologically normal liver, 18 idiopathic noncirrhotic portal hypertension, and 22 cirrhotic patients, was analyzed. Lymphangiogenesis was significantly increased in livers from patients with portal-sinusoidal vascular disease, cirrhotic patients, as well as PPVL and BDL rats. Importantly, Schwann cells of sympathetic nerves highly expressed vascular endothelial growth factor-C in PPVL rats. Vascular endothelial growth factor-C neutralizing antibody or sympathetic denervation significantly decreased lymphangiogenesis in livers of PPVL and BDL rats, which resulted in progression of liver fibrosis. Liver specimens from cirrhotic patients showed a positive correlation between sympathetic nerve/Schwann cell-positive areas and lymphatic vessel numbers, which was supported by gene set analysis from patients with noncirrhotic portal hypertension and cirrhotic patients. Sympathetic nerves promote hepatic lymphangiogenesis in noncirrhotic and cirrhotic livers. Increased hepatic lymphangiogenesis can be protective against liver fibrosis.


Assuntos
Doenças Vasculares , Fator C de Crescimento do Endotélio Vascular , Ratos , Humanos , Animais , Linfangiogênese , Ratos Sprague-Dawley , Modelos Animais de Doenças , Cirrose Hepática/patologia , Fígado/patologia , Doenças Vasculares/patologia , Sistema Nervoso Simpático
7.
Am J Physiol Gastrointest Liver Physiol ; 325(5): G379-G390, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37605828

RESUMO

The liver lymphatic system is essential for maintaining tissue fluid balance and immune function. The detailed structure of lymphatic vessels (LVs) in the liver remains to be fully demonstrated. The aim of this study is to reveal LV structures in normal and diseased livers by developing a tissue-clearing and coimmunolabeling protocol optimized for the tissue size and the processing time for three-dimensional (3-D) visualization and quantification of LVs in the liver. We showed that our optimized protocol enables in-depth exploration of lymphatic networks in the liver, consisting of LVs along the portal tract (deep lymphatic system) and within the collagenous Glisson's capsule (superficial lymphatic system) in different species. With this protocol, we have shown 3-D LVs configurations in relation to blood vessels and bile ducts in cholestatic mouse livers, in which LVs were highly dilated and predominantly found around highly proliferating bile ducts and peribiliary vascular plexuses in the portal tract. We also established a quantification method using a 3-D volume-rendering approach. We observed a 1.6-fold (P < 0.05) increase in the average diameter of LVs and a 2.4-fold increase (P < 0.05) in the average branch number of LVs in cholestatic/fibrotic livers compared with control livers. Furthermore, cholestatic/fibrotic livers showed a 4.3-fold increase (P < 0.05) in total volume of LVs compared with control livers. Our optimized protocol and quantification method demonstrate an efficient and simple liver tissue-clearing procedure that allows the comprehensive analysis of liver lymphatic system.NEW & NOTEWORTHY This article showed a comprehensive 3-D-structural analysis of liver lymphatic vessel (LV) in normal and diseased livers in relation to blood vessels and bile ducts. In addition to the LVs highly localized at the portal tract, we revealed capsular LVs in mouse, rat, and human livers. In cholestatic livers, LVs are significantly increased and dilated compared with normal livers. Our optimized protocol provides detailed spatial information for LVs remodeling in normal and pathological conditions.


Assuntos
Colestase , Vasos Linfáticos , Ratos , Humanos , Camundongos , Animais , Fígado/patologia , Ductos Biliares , Vasos Linfáticos/diagnóstico por imagem , Vasos Linfáticos/patologia , Colestase/patologia , Cirrose Hepática/patologia
8.
Curr Hepatol Rep ; 22(2): 67-73, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37214274

RESUMO

Purpose of Review: This review article will examine portal hypertension in alcoholic hepatitis (AH) from both a basic mechanistic and a clinical perspective. Recent Findings: Alcoholic hepatitis is a major public health problem in the USA, accounting for over 300,000 hospital admissions in a recent year of data (Jinjuvadia et al. J Clin Gastroenterol. 60;49:506-511). Portal hypertension is a key consequence of AH and a driver of liver-related morbidity and mortality. Alcohol may directly mediate portal hypertension via multiple possible mechanisms, including increased portal inflow, increased intrahepatic vasoconstriction, inflammation, and changes in the liver vasculature such as perisinusoidal fibrosis and phlebosclerosis. Summary: Portal hypertension is a key consequence of AH and a critical area for future research.

9.
Hepatology ; 78(2): 649-669, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36626620

RESUMO

LSECs are a unique population of endothelial cells within the liver and are recognized as key regulators of liver homeostasis. LSECs also play a key role in liver disease, as dysregulation of their quiescent phenotype promotes pathological processes within the liver including inflammation, microvascular thrombosis, fibrosis, and portal hypertension. Recent technical advances in single-cell analysis have characterized distinct subpopulations of the LSECs themselves with a high resolution and defined their gene expression profile and phenotype, broadening our understanding of their mechanistic role in liver biology. This article will review 4 broad advances in our understanding of LSEC biology in general: (1) LSEC heterogeneity, (2) LSEC aging and senescence, (3) LSEC role in liver regeneration, and (4) LSEC role in liver inflammation and will then review the role of LSECs in various liver pathologies including fibrosis, DILI, alcohol-associated liver disease, NASH, viral hepatitis, liver transplant rejection, and ischemia reperfusion injury. The review will conclude with a discussion of gaps in knowledge and areas for future research.


Assuntos
Células Endoteliais , Hepatopatias , Humanos , Células Endoteliais/metabolismo , Fígado/patologia , Hepatopatias/patologia , Fibrose , Inflamação/metabolismo
10.
Int J Biol Sci ; 18(14): 5522-5538, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147479

RESUMO

Cathepsins play a role in regulation of cell function through their presence in the cell nucleus. However, the role of Cathepsin K (Ctsk) as an epigenetic regulator in osteoclasts remains unknown. Our data demonstrated that Ctsk-/-Mmp9-/- mice have a striking phenotype with a 5-fold increase in bone volume compared with WT. RNA-seq analysis of Ctsk-/- , Mmp9-/- and Ctsk-/-/Mmp9-/- osteoclasts revealed their distinct functions in gene expression regulation, including reduced Cebpa expression, increased Nfatc1 expression, and in signaling pathways activity regulation. Western blots and qPCR data validated these changes. ATAC-seq profiling of Ctsk-/- , Mmp9-/-, and Ctsk-/-/Mmp9-/- osteoclasts indicated the changes resulted from reduced chromatin openness in the promoter region of Cebpa and increased chromatin openness in Nfatc1 promoter in Ctsk-/-/Mmp9-/- osteoclasts compared to that in osteoclasts of WT, Ctsk/- and Mmp9-/- . We found co-localization of Ctsk with c-Fos and cleavage of H3K27me3 in wild-type osteoclasts. Remarkably, cleavage of H3K27me3 was blocked in osteoclasts of Ctsk-/- and Ctsk-/-/Mmp9-/- mice, suggesting that Ctsk may epigenetically regulate distinctive groups of genes' expression by regulating proteolysis of H3K27me3. Ctsk-/-/Mmp9-/- double knockout dramatically protects against ovariectomy induced bone loss. We found that Ctsk may function as an essential epigenetic regulator in modulating levels of H3K27me3 in osteoclast activation and maintaining bone homeostasis. Our study revealed complementary and unique functions of Ctsk as epigenetic regulators for maintaining osteoclast activation and bone homeostasis by orchestrating multiple signaling pathways and targeting both Ctsk and Mmp9 is a novel therapeutic approach for osteolytic diseases such as osteoporosis.


Assuntos
Reabsorção Óssea , Catepsina K , Metaloproteinase 9 da Matriz , Osteoclastos , Animais , Reabsorção Óssea/metabolismo , Catepsina K/genética , Diferenciação Celular , Cromatina/metabolismo , Feminino , Expressão Gênica , Histonas/metabolismo , Homeostase , Metaloproteinase 9 da Matriz/genética , Camundongos , Camundongos Knockout , Ligante RANK/metabolismo
11.
J Control Release ; 341: 457-474, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34856227

RESUMO

Kupffer cells are a key source of reactive oxygen species (ROS) and are implicated in the development of steatohepatitis and fibrosis in nonalcoholic steatohepatitis (NASH). We recently developed a polythiolated and mannosylated human serum albumin (SH-Man-HSA), a nano-antioxidant that targets Kupffer cells, in which the mannosyl units on albumin allows their specific uptake by Kupffer cells via the mannose receptor C type 1 (MRC1), and in which the polythiolation confers antioxidant activity. The aim of this study was to investigate the therapeutic potential of SH-Man-HSA in NASH model mice. In livers from mice and/or patients with NASH, we observed a reduced blood flow in the liver lobes and the down-regulation in MRC1 expression in Kupffer cells, and SH-Man-HSA alone failed to improve the pathological phenotype in NASH. However, the administration of a nitric oxide (NO) donor restored hepatic blood flow and increased the expression of the mannose receptor C type 2 (MRC2) instead of MRC1. Consequently, treatment with a combination of SH-Man-HSA and an NO donor improved oxidative stress-associated pathology. Finally, we developed a hybrid type of nano-antioxidant (SNO-Man-HSA) via the S-nitrosation of SH-Man-HSA. This nanomedicine efficiently delivered both NO and thiol groups to the liver, with a hepatoprotective effect that was comparable to the combination therapy of SH-Man-HSA and an NO donor. These findings suggest that SNO-Man-HSA has the potential for functioning as a novel nano-therapy for the treatment of NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Antioxidantes/uso terapêutico , Humanos , Células de Kupffer/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo
12.
Hepatol Commun ; 6(2): 255-269, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34658172

RESUMO

Liver injury, characterized predominantly by elevated aspartate aminotransferase and alanine aminotransferase, is a common feature of coronavirus disease 2019 (COVID-19) symptoms caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2). Additionally, SARS-CoV-2 infection is associated with acute-on-chronic liver failure in patients with cirrhosis and has a notably elevated mortality in patients with alcohol-related liver disease compared to other etiologies. Direct viral infection of the liver with SARS-CoV-2 remains controversial, and alternative pathophysiologic explanations for its hepatic effects are an area of active investigation. In this review, we discuss the effects of SARS-CoV-2 and the inflammatory environment it creates on endothelial cells and platelets more generally and then with a hepatic focus. In doing this, we present vascular inflammation and thrombosis as a potential mechanism of liver injury and liver-related complications in COVID-19.


Assuntos
Transtornos Plaquetários/virologia , COVID-19/fisiopatologia , Endotélio Vascular/virologia , Inflamação/virologia , Hepatopatias/virologia , Trombose/virologia , Transtornos Plaquetários/imunologia , Transtornos Plaquetários/fisiopatologia , COVID-19/imunologia , Endotélio Vascular/imunologia , Endotélio Vascular/fisiopatologia , Humanos , Inflamação/imunologia , Inflamação/fisiopatologia , Hepatopatias/imunologia , Hepatopatias/fisiopatologia , Trombose/imunologia , Trombose/fisiopatologia
13.
Hepatol Res ; 51(9): 1000-1006, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34260803

RESUMO

AIM: Coronavirus disease (COVID-19) is characterized by pneumonia with secondary damage to multiple organs including the liver. Liver injury (elevated alanine aminotransferase [ALT] and aspartate aminotransferase [AST]) often correlates with disease severity in COVID-19 patients. The aim of this study is to identify pathological microthrombi in COVID-19 patient livers by correlating their morphology with liver injury, and examine hyperfibrinogenemia and von Willebrand factor (vWF) as mechanisms of their formation. METHODS: Forty-three post-mortem liver biopsy samples from COVID-19 patients were obtained from Papa Giovanni XXIII Hospital in Bergamo, Italy. Three morphological features of microthrombosis (sinusoidal erythrocyte aggregation [SEA], platelet microthrombi [PMT], and fibrous thrombi) were evaluated. RESULTS: We found liver sinusoidal microthrombosis in 23 COVID-19 patients (53%) was associated with a higher serum ALT and AST level compared to those without (ALT: 10-fold, p = 0.04; AST: 11-fold, p = 0.08). Of 43 livers, PMT and SEA were observed in 14 (33%) and 19 (44%) cases, respectively. Fibrous thrombi were not observed. Platelet microthrombi were associated with increased ALT (p < 0.01), whereas SEA was not (p = 0.73). In COVID-19 livers, strong vWF staining in liver sinusoidal endothelial cells was associated with significantly increased platelet adhesion (1.7-fold, p = 0.0016), compared to those with weak sinusoidal vWF (2-fold, p < 0.0001). Sinusoidal erythrocyte aggregation in 19 (83%) liver samples was mainly seen in zone 2. Livers with SEA had significantly higher fibrinogen (1.6-fold, p = 0.031) compared to those without SEA in COVID-19 patients. CONCLUSIONS: Liver PMT is a pathologically important thrombosis associated with liver injury in COVID-19, while SEA is a unique morphological feature of COVID-19 patient livers. Sinusoidal vWF and hyperfibrinogenemia could contribute to PMT and SEA formation.

14.
Western Pac Surveill Response J ; 12(1): 26-31, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34094620

RESUMO

PROBLEM: From December 2016 to February 2017, two cases of invasive meningococcal disease and one case of meningococcal conjunctivitis, all serogroup W, occurred in Aboriginal children in the Ceduna region of South Australia. The clustering of cases in time and place met the threshold for a community outbreak. CONTEXT: The Ceduna region is a remote part of South Australia, with more than 25% of the population identifying as Aboriginal or Torres Strait Islander. ACTION: As part of the outbreak response, a community-wide meningococcal vaccination programme against serogroups A, C, W and Y was implemented in a collaboration among different agencies of the South Australia Department for Health and Well-being, Aboriginal health and community services providers, and other local service providers and government agencies. The programme comprised an outbreak vaccination schedule, targeting all people aged 3 2 months residing in the cases' places of residence or in towns with close links. OUTCOME: Between March and June 2017, 3383 persons were vaccinated, achieving an estimated coverage of 71-85% of the target population, with 31% (n = 1034) of those vaccinated identifying as Aboriginal or Torres Strait Islander. No local cases of serogroup W occurred during the vaccination programme, but two further cases were notified by the end of 2018. DISCUSSION: The participation of a large number of local and non-health-sector stakeholders in programme planning and implementation, a clear response management structure and high community acceptability were identified as key factors that contributed to the programme achieving high vaccination coverage. The need to develop standard operating procedures for community-based outbreak response interventions to ease logistical challenges was considered an important lesson learnt.


Assuntos
Surtos de Doenças/prevenção & controle , Infecções Meningocócicas/microbiologia , Infecções Meningocócicas/prevenção & controle , Vacinas Meningocócicas/administração & dosagem , Neisseria meningitidis/genética , Adolescente , Adulto , Serviços de Saúde Comunitária , Feminino , Humanos , Programas de Imunização , Masculino , Infecções Meningocócicas/epidemiologia , Pessoa de Meia-Idade , Neisseria meningitidis/isolamento & purificação , Avaliação de Programas e Projetos de Saúde , Sorogrupo , Austrália do Sul/epidemiologia , Adulto Jovem
15.
Artigo em Inglês | MEDLINE | ID: mdl-34074233

RESUMO

ABSTRACT: With COVID-19 affecting millions of people around the globe, quarantine of international arrivals is a critical public health measure to prevent further disease transmission in local populations. This measure has also been applied in the repatriation of citizens, undertaken by several countries as an ethical obligation and legal responsibility. This article describes the process of planning and preparing for the repatriation operation in South Australia during the COVID-19 pandemic. Interagency collaboration, development of a COVID-19 testing and quarantining protocol, implementing infection prevention and control, and building a specialised health care delivery model were essential aspects of the repatriation operational planning, with a focus on maintaining dignity and wellbeing of the passengers as well as on effective prevention of COVID-19 transmission. From April 2020 to mid-February 2021, more than 14,000 international arrivals travellers have been repatriated under the South Australian repatriation operations. This paper has implications to inform ongoing repatriation efforts in Australia and overseas in a pandemic situation.


Assuntos
COVID-19/epidemiologia , Controle de Infecções/legislação & jurisprudência , Saúde Pública/legislação & jurisprudência , Quarentena/legislação & jurisprudência , COVID-19/diagnóstico , COVID-19/transmissão , Teste para COVID-19/métodos , Teste para COVID-19/normas , Atenção à Saúde , Humanos , Controle de Infecções/métodos , Regulamento Sanitário Internacional , Pandemias , Saúde Pública/métodos , Quarentena/métodos , Medição de Risco , Fatores de Risco , SARS-CoV-2/isolamento & purificação , Austrália do Sul/epidemiologia , Viagem
16.
J Hepatol ; 75(3): 647-658, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33991637

RESUMO

BACKGROUND AND AIMS: COVID-19 is associated with liver injury and elevated interleukin-6 (IL-6). We hypothesized that IL-6 trans-signaling in liver sinusoidal endothelial cells (LSECs) leads to endotheliopathy (a proinflammatory and procoagulant state) and liver injury in COVID-19. METHODS: Coagulopathy, endotheliopathy, and alanine aminotransferase (ALT) were retrospectively analyzed in a subset (n = 68), followed by a larger cohort (n = 3,780) of patients with COVID-19. Liver histology from 43 patients with COVID-19 was analyzed for endotheliopathy and its relationship to liver injury. Primary human LSECs were used to establish the IL-6 trans-signaling mechanism. RESULTS: Factor VIII, fibrinogen, D-dimer, von Willebrand factor (vWF) activity/antigen (biomarkers of coagulopathy/endotheliopathy) were significantly elevated in patients with COVID-19 and liver injury (elevated ALT). IL-6 positively correlated with vWF antigen (p = 0.02), factor VIII activity (p = 0.02), and D-dimer (p <0.0001). On liver histology, patients with COVID-19 and elevated ALT had significantly increased vWF and platelet staining, supporting a link between liver injury, coagulopathy, and endotheliopathy. Intralobular neutrophils positively correlated with platelet (p <0.0001) and vWF (p <0.01) staining, and IL-6 levels positively correlated with vWF staining (p <0.01). IL-6 trans-signaling leads to increased expression of procoagulant (factor VIII, vWF) and proinflammatory factors, increased cell surface vWF (p <0.01), and increased platelet attachment in LSECs. These effects were blocked by soluble glycoprotein 130 (IL-6 trans-signaling inhibitor), the JAK inhibitor ruxolitinib, and STAT1/3 small-interfering RNA knockdown. Hepatocyte fibrinogen expression was increased by the supernatant of LSECs subjected to IL-6 trans-signaling. CONCLUSION: IL-6 trans-signaling drives the coagulopathy and hepatic endotheliopathy associated with COVID-19 and could be a possible mechanism behind liver injury in these patients. LAY SUMMARY: Patients with SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection often have liver injury, but why this occurs remains unknown. High levels of interleukin-6 (IL-6) and its circulating receptor, which form a complex to induce inflammatory signals, have been observed in patients with COVID-19. This paper demonstrates that the IL-6 signaling complex causes harmful changes to liver sinusoidal endothelial cells and may promote blood clotting and contribute to liver injury.


Assuntos
COVID-19/complicações , Células Endoteliais/patologia , Interleucina-6/fisiologia , Hepatopatias/etiologia , SARS-CoV-2 , Adulto , Transtornos da Coagulação Sanguínea/etiologia , Fibrinogênio/análise , Humanos , Interleucina-6/sangue , Janus Quinase 1/metabolismo , Nitrilas , Pirazóis/farmacologia , Pirimidinas , Estudos Retrospectivos , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/fisiologia , Fator de von Willebrand/análise
17.
J Hepatol ; 75(2): 377-386, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33675874

RESUMO

BACKGROUND & AIMS: Liver sinusoidal endothelial cell (LSEC) dysfunction has been reported in alcohol-related liver disease, yet it is not known whether LSECs metabolize alcohol. Thus, we investigated this, as well as the mechanisms of alcohol-induced LSEC dysfunction and a potential therapeutic approach for alcohol-induced liver injury. METHODS: Primary human, rat and mouse LSECs were used. Histone deacetylase 6 (HDAC6) was overexpressed specifically in liver ECs via adeno-associated virus (AAV)-mediated gene delivery to decrease heat shock protein 90 (Hsp90) acetylation in ethanol-fed mice. RESULTS: LSECs expressed CYP2E1 and alcohol dehydrogenase 1 (ADH1) and metabolized alcohol. Ethanol induced CYP2E1 in LSECs, but not ADH1. Alcohol metabolism by CYP2E1 increased Hsp90 acetylation and decreased its interaction with endothelial nitric oxide synthase (eNOS) leading to a decrease in nitric oxide (NO) production. A non-acetylation mutant of Hsp90 increased its interaction with eNOS and NO production, whereas a hyperacetylation mutant decreased NO production. These results indicate that Hsp90 acetylation is responsible for decreases in its interaction with eNOS and eNOS-derived NO production. AAV8-driven HDAC6 overexpression specifically in liver ECs deacetylated Hsp90, restored Hsp90's interaction with eNOS and ameliorated alcohol-induced liver injury in mice. CONCLUSION: Restoring LSEC function is important for ameliorating alcohol-induced liver injury. To this end, blocking acetylation of Hsp90 specifically in LSECs via AAV-mediated gene delivery has the potential to be a new therapeutic strategy. LAY SUMMARY: Alcohol metabolism in liver sinusoidal endothelial cells (LSECs) and the mechanism of alcohol-induced LSEC dysfunction are largely unknown. Herein, we demonstrate that LSECs can metabolize alcohol. We also uncover a mechanism by which alcohol induces LSEC dysfunction and liver injury, and we identify a potential therapeutic strategy to prevent this.


Assuntos
Acetilação/efeitos dos fármacos , Hepatopatias Alcoólicas/genética , Adulto , Consumo de Bebidas Alcoólicas/efeitos adversos , Consumo de Bebidas Alcoólicas/fisiopatologia , Análise de Variância , Animais , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/enzimologia , Proteínas de Choque Térmico HSP90 , Humanos , Hepatopatias Alcoólicas/etiologia , Camundongos , Ratos
18.
Cell Mol Gastroenterol Hepatol ; 11(4): 1139-1161, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33340713

RESUMO

BACKGROUND: Dysfunction of liver sinusoidal endothelial cells (LSECs) is permissive for the progression of liver fibrosis and cirrhosis and responsible for its clinical complications. Here, we have mapped the spatial distribution of heterogeneous liver ECs in normal vs cirrhotic mouse livers and identified zone-specific transcriptomic changes of LSECs associated with liver cirrhosis using scRNA-seq technology. APPROACH & RESULTS: Cirrhosis was generated in endothelial specific green fluorescent protein (GFP) reporter mice through carbon tetrachloride inhalation for 12 weeks. GFP-positive liver EC populations were isolated from control and cirrhotic mice by FACS. We identified 6 clusters of liver EC populations including 3 clusters of LSECs, 2 clusters of vascular ECs and 1 cluster of lymphatic ECs. Based on previously reported LSEC-landmarks, we mapped the 3 clusters of LSECs in zones 1, 2, and 3, and determined phenotypic changes in each zone between control and cirrhotic mice. We found genes representing capillarization of LSECs (eg, CD34) as well as extracellular matrix genes were most upregulated in LSECs of zone 3 in cirrhotic mice, which may contribute to the development of basement membranes. LSECs in cirrhotic mice also demonstrated decreased expression of endocytic receptors, most remarkably in zone 3. Transcription factors (Klf2 [Kruppel-like factor-2], Klf4 [Kruppel-like factor-4], and AP-1) that induce nitric oxide production in response to shear stress were downregulated in LSECs of all zones in cirrhotic mice, implying increased intrahepatic vascular resistance. CONCLUSION: This study deepens our knowledge of the pathogenesis of liver cirrhosis at a spatial, cell-specific level, which is indispensable for the development of novel therapeutic strategies to target the most dysfunctional liver ECs.


Assuntos
Capilares/patologia , Células Endoteliais/patologia , Regulação da Expressão Gênica , Cirrose Hepática/genética , Cirrose Hepática/patologia , Análise de Célula Única/métodos , Transcriptoma , Animais , Capilares/metabolismo , Tetracloreto de Carbono/toxicidade , Células Endoteliais/metabolismo , Cirrose Hepática/induzido quimicamente , Camundongos
19.
Gastroenterology ; 160(4): 1315-1329.e13, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33227282

RESUMO

BACKGROUND & AIMS: Hepatic encephalopathy (HE) is a serious neurologic complication in patients with liver cirrhosis. Very little is known about the role of the meningeal lymphatic system in HE. We tested our hypothesis that enhancement of meningeal lymphatic drainage could decrease neuroinflammation and ameliorate HE. METHODS: A 4-week bile duct ligation model was used to develop cirrhosis with HE in rats. Brain inflammation in patients with HE was evaluated by using archived GSE41919. The motor function of rats was assessed by the rotarod test. Adeno-associated virus 8-vascular endothelial growth factor C (AAV8-VEGF-C) was injected into the cisterna magna of HE rats 1 day after surgery to induce meningeal lymphangiogenesis. RESULTS: Cirrhotic rats with HE showed significantly increased microglia activation in the middle region of the cortex (P < .001) as well as increased neuroinflammation, as indicated by significant increases in interleukin 1ß, interferon γ, tumor necrosis factor α, and ionized calcium binding adaptor molecule 1 (Iba1) expression levels in at least 1 of the 3 regions of the cortex. Motor function was also impaired in rats with HE (P < .05). Human brains of patients with cirrhosis with HE also exhibited up-regulation of proinflammatory genes (NFKB1, IbA1, TNF-α, and IL1ß) (n = 6). AAV8-VEGF-C injection significantly increased meningeal lymphangiogenesis (P = .035) and tracer dye uptake in the anterior and middle regions of the cortex (P = .006 and .003, respectively), their corresponding meninges (P = .086 and .006, respectively), and the draining lymph nodes (P = .02). Furthermore, AAV8-VEGF-C decreased microglia activation (P < .001) and neuroinflammation and ameliorated motor dysfunction (P = .024). CONCLUSIONS: Promoting meningeal lymphatic drainage and enhancing waste clearance improves HE. Manipulation of meningeal lymphangiogenesis could be a new therapeutic strategy for the treatment of HE.


Assuntos
Sistema Glinfático/patologia , Encefalopatia Hepática/imunologia , Cirrose Hepática/complicações , Transtornos Motores/imunologia , Fator C de Crescimento do Endotélio Vascular/metabolismo , Animais , Linhagem Celular , Córtex Cerebral/imunologia , Córtex Cerebral/patologia , Cisterna Magna/imunologia , Cisterna Magna/patologia , Dependovirus/genética , Modelos Animais de Doenças , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Sistema Glinfático/imunologia , Encefalopatia Hepática/patologia , Humanos , Cirrose Hepática/imunologia , Linfangiogênese/imunologia , Masculino , Microglia/imunologia , Microglia/patologia , Transtornos Motores/patologia , Ratos , Fator C de Crescimento do Endotélio Vascular/genética
20.
Biochem J ; 477(13): 2421-2438, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32391876

RESUMO

One of the fundamental questions in bone biology is where osteoblasts originate and how osteoblast differentiation is regulated. The mechanism underlying which factors regulate chondrocyte to osteoblast lineage commitment remains unknown. Our data showed that Runt-related transcription factor 1 (Runx1) is expressed at different stages of both chondrocyte and osteoblast differentiation. Runx1 chondrocyte-specific knockout (Runx1f/fCol2α1-cre) mice exhibited impaired cartilage formation, decreased bone density, and an osteoporotic phenotype. The expressions of chondrocyte differentiation regulation genes, including Sox9, Ihh, CyclinD1, PTH1R, and hypertrophic chondrocyte marker genes including Col2α1, Runx2, MMP13, Col10α1 in the growth plate were significantly decreased in Runx1f/fCol2α1-cre mice chondrocytes. Importantly, the expression of osteoblast differentiation regulation genes including Osx, Runx2, ATF4, and osteoblast marker genes including osteocalcin (OCN) and osteopontin (OPN) were significantly decreased in the osteoblasts of Runx1f/fCol2α1-cre mice. Notably, our data showed that osteoblast differentiation regulation genes and marker genes are also expressed in chondrocytes and the expressions of these marker genes were significantly decreased in the chondrocytes of Runx1f/fCol2α1-cre mice. Our data showed that chromatin immunoprecipitation (ChIP) and promoter mapping analysis revealed that Runx1 directly binds to the Indian hedgehog homolog (Ihh) promoter to regulate its expression, indicating that Runx1 directly regulates the transcriptional expression of chondrocyte genes. Collectively, we revealed that Runx1 signals chondrocyte to osteoblast lineage commitment and promotes endochondral bone formation through enhancing both chondrogenesis and osteogenesis genes expressions, indicating Runx1 may be a therapeutic target to enhance endochondral bone formation and prevent osteoporosis fractures.


Assuntos
Condrócitos/citologia , Condrócitos/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Adipogenia/genética , Adipogenia/fisiologia , Animais , Western Blotting , Células Cultivadas , Condrogênese/genética , Condrogênese/fisiologia , Imunoprecipitação da Cromatina , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Imunofluorescência , Imuno-Histoquímica , Camundongos , Osteogênese/genética , Osteogênese/fisiologia , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...