Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
eNeuro ; 7(3)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32332080

RESUMO

Cortical neuronal circuits along the sensorimotor pathways are shaped by experience during critical periods of heightened plasticity in early postnatal development. After closure of critical periods, measured histologically by the formation and maintenance of extracellular matrix structures called perineuronal nets (PNNs), the adult mouse brain exhibits restricted plasticity and maturity. Mature PNNs are typically considered to be stable structures that restrict synaptic plasticity on cortical parvalbumin+ (PV+) GABAergic neurons. Changes in environment (i.e., novel behavioral training) or social contexts (i.e., motherhood) are known to elicit synaptic plasticity in relevant neural circuitry. However, little is known about concomitant changes in the PNNs surrounding the cortical PV+ GABAergic neurons. Here, we show novel changes in PNN density in the primary somatosensory cortex (SS1) of adult female mice after maternal experience [called surrogate (Sur)], using systematic microscopy analysis of a whole brain region. On average, PNNs were increased in the right barrel field and decreased in the left forelimb regions. Individual mice had left hemisphere dominance in PNN density. Using adult female mice deficient in methyl-CpG-binding protein 2 (MECP2), an epigenetic regulator involved in regulating experience-dependent plasticity, we found that MECP2 is critical for this precise and dynamic expression of PNN. Adult naive Mecp2-heterozygous (Het) females had increased PNN density in specific subregions in both hemispheres before maternal experience, compared with wild-type (WT) littermate controls. The laterality in PNN expression seen in naive Het (NH) was lost after maternal experience in Sur Het (SH) mice, suggesting possible intact mechanisms for plasticity. Together, our results identify subregion and hemisphere-specific alterations in PNN expression in adult females, suggesting extracellular matrix plasticity as a possible neurobiological mechanism for adult behaviors in rodents.


Assuntos
Proteína 2 de Ligação a Metil-CpG , Parvalbuminas , Animais , Matriz Extracelular , Feminino , Neurônios GABAérgicos , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal
2.
Genome Res ; 26(9): 1188-201, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27435934

RESUMO

The packaging of DNA into chromatin plays an important role in transcriptional regulation and nuclear processes. Brahma-related gene-1 SMARCA4 (also known as BRG1), the essential ATPase subunit of the mammalian SWI/SNF chromatin remodeling complex, uses the energy from ATP hydrolysis to disrupt nucleosomes at target regions. Although the transcriptional role of SMARCA4 at gene promoters is well-studied, less is known about its role in higher-order genome organization. SMARCA4 knockdown in human mammary epithelial MCF-10A cells resulted in 176 up-regulated genes, including many related to lipid and calcium metabolism, and 1292 down-regulated genes, some of which encode extracellular matrix (ECM) components that can exert mechanical forces and affect nuclear structure. ChIP-seq analysis of SMARCA4 localization and SMARCA4-bound super-enhancers demonstrated extensive binding at intergenic regions. Furthermore, Hi-C analysis showed extensive SMARCA4-mediated alterations in higher-order genome organization at multiple resolutions. First, SMARCA4 knockdown resulted in clustering of intra- and inter-subtelomeric regions, demonstrating a novel role for SMARCA4 in telomere organization. SMARCA4 binding was enriched at topologically associating domain (TAD) boundaries, and SMARCA4 knockdown resulted in weakening of TAD boundary strength. Taken together, these findings provide a dynamic view of SMARCA4-dependent changes in higher-order chromatin organization and gene expression, identifying SMARCA4 as a novel component of chromatin organization.


Assuntos
Proliferação de Células/genética , Cromatina/genética , DNA Helicases/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Linhagem Celular Tumoral , Montagem e Desmontagem da Cromatina , Células Epiteliais/metabolismo , Regulação da Expressão Gênica/genética , Humanos , Nucleossomos/genética
3.
Genome Biol ; 16: 214, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26415882

RESUMO

BACKGROUND: Higher-order chromatin structure is often perturbed in cancer and other pathological states. Although several genetic and epigenetic differences have been charted between normal and breast cancer tissues, changes in higher-order chromatin organization during tumorigenesis have not been fully explored. To probe the differences in higher-order chromatin structure between mammary epithelial and breast cancer cells, we performed Hi-C analysis on MCF-10A mammary epithelial and MCF-7 breast cancer cell lines. RESULTS: Our studies reveal that the small, gene-rich chromosomes chr16 through chr22 in the MCF-7 breast cancer genome display decreased interaction frequency with each other compared to the inter-chromosomal interaction frequency in the MCF-10A epithelial cells. Interestingly, this finding is associated with a higher occurrence of open compartments on chr16-22 in MCF-7 cells. Pathway analysis of the MCF-7 up-regulated genes located in altered compartment regions on chr16-22 reveals pathways related to repression of WNT signaling. There are also differences in intra-chromosomal interactions between the cell lines; telomeric and sub-telomeric regions in the MCF-10A cells display more frequent interactions than are observed in the MCF-7 cells. CONCLUSIONS: We show evidence of an intricate relationship between chromosomal organization and gene expression between epithelial and breast cancer cells. Importantly, this work provides a genome-wide view of higher-order chromatin dynamics and a resource for studying higher-order chromatin interactions in two cell lines commonly used to study the progression of breast cancer.


Assuntos
Neoplasias da Mama/genética , Carcinogênese , Cromatina/genética , Células Epiteliais/metabolismo , Telômero/genética , Neoplasias da Mama/patologia , Epigênese Genética , Células Epiteliais/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Glândulas Mamárias Humanas/metabolismo , Glândulas Mamárias Humanas/patologia
4.
Genome Biol ; 12(12): R125, 2011 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-22189060

RESUMO

BACKGROUND: Transcription factors (TFs) play a central role in regulating gene expression by interacting with cis-regulatory DNA elements associated with their target genes. Recent surveys have examined the DNA binding specificities of most Saccharomyces cerevisiae TFs, but a comprehensive evaluation of their data has been lacking. RESULTS: We analyzed in vitro and in vivo TF-DNA binding data reported in previous large-scale studies to generate a comprehensive, curated resource of DNA binding specificity data for all characterized S. cerevisiae TFs. Our collection comprises DNA binding site motifs and comprehensive in vitro DNA binding specificity data for all possible 8-bp sequences. Investigation of the DNA binding specificities within the basic leucine zipper (bZIP) and VHT1 regulator (VHR) TF families revealed unexpected plasticity in TF-DNA recognition: intriguingly, the VHR TFs, newly characterized by protein binding microarrays in this study, recognize bZIP-like DNA motifs, while the bZIP TF Hac1 recognizes a motif highly similar to the canonical E-box motif of basic helix-loop-helix (bHLH) TFs. We identified several TFs with distinct primary and secondary motifs, which might be associated with different regulatory functions. Finally, integrated analysis of in vivo TF binding data with protein binding microarray data lends further support for indirect DNA binding in vivo by sequence-specific TFs. CONCLUSIONS: The comprehensive data in this curated collection allow for more accurate analyses of regulatory TF-DNA interactions, in-depth structural studies of TF-DNA specificity determinants, and future experimental investigations of the TFs' predicted target genes and regulatory roles.


Assuntos
DNA/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Reguladores/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Sítios de Ligação , Imunoprecipitação da Cromatina , DNA/genética , Dados de Sequência Molecular , Motivos de Nucleotídeos/genética , Análise Serial de Proteínas , Ligação Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo
5.
Tree Physiol ; 27(11): 1575-83, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17669747

RESUMO

Salix matsudana Koidz. cultivar 'Tortuosa' (corkscrew willow) is characterized by extensive stem bending and curling of leaves. To investigate the genetic basis of this trait, controlled crosses were made between a corkscrew female (S. matsudana 'Tortuosa') and a straight-stemmed, wild-type male (Salix alba L. Clone 99010). Seventy-seven seedlings from this family (ID 99270) were grown in the field for phenotypic observation. Among the progeny, 39 had straight stems and leaves and 38 had bent stems and curled leaves, suggesting that a dominant allele at a single locus controls this phenotype. As a first step in characterizing the locus, we searched for amplified fragment length polymorphism (AFLP) and randomly amplified polymorphic DNA (RAPD) markers linked to the tortuosa allele using bulked segregant analysis. Samples of DNA from 10 corkscrew individuals were combined to produce a corkscrew pool, and DNA from 10 straight progeny was combined to make a wild-type pool. Sixty-four AFLP primer combinations and 640 RAPD primers were screened to identify marker bands amplified from the corkscrew parent and progeny pool, but not from the wild-type parent or progeny pool. An AFLP marker and a RAPD marker linked to and flanking the tortuosa locus were placed on a preliminary linkage map constructed based on segregation among the 77 progeny. Sectioning and analysis of shoot tips revealed that the corkscrew phenotype is associated with vascular cell collapse, smaller cell size in regions near the cambium and less developed phloem fibers than in wild-type progeny. Identification of a gene associated with this trait could lead to greater understanding of the control of normal stem development in woody plants.


Assuntos
Caules de Planta/crescimento & desenvolvimento , Salix/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Genes Dominantes , Ligação Genética , Marcadores Genéticos , Caules de Planta/anatomia & histologia , Técnica de Amplificação ao Acaso de DNA Polimórfico , Salix/anatomia & histologia , Salix/genética , Árvores/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...