Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
bioRxiv ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38352546

RESUMO

Metabolic byproducts of the intestinal microbiota are crucial in maintaining host immune tone and shaping inter-species ecological dynamics. Among these metabolites, succinate is a driver of tuft cell (TC) differentiation and consequent type 2 immunity-dependent protection against invading parasites in the small intestine. Succinate is also a growth enhancer of the nosocomial pathogen Clostridioides difficile in the large intestine. To date, no research has shown the role of succinate in modulating TC dynamics in the large intestine, or the relevance of this immune pathway to C. difficile pathophysiology. Here we reveal the existence of a three-way circuit between commensal microbes, C. difficile and host epithelial cells which centers around succinate. Through selective microbiota depletion experiments we demonstrate higher levels of type 2 cytokines leading to expansion of TCs in the colon. We then demonstrate the causal role of the microbiome in modulating colonic TC abundance and subsequent type 2 cytokine induction using rational supplementation experiments with fecal transplants and microbial consortia of succinate-producing bacteria. We show that administration of a succinate-deficient Bacteroides thetaiotaomicron knockout (Δfrd) significantly reduces the enhanced type 2 immunity in mono-colonized mice. Finally, we demonstrate that mice prophylactically administered with the consortium of succinate-producing bacteria show reduced C. difficile-induced morbidity and mortality compared to mice administered with heat-killed bacteria or the vehicle. This effect is reduced in a partial tuft cell knockout mouse, Pou2f3+/-, and nullified in the tuft cell knockout mouse, Pou2f3-/-, confirming that the observed protection occurs via the TC pathway. Succinate is an intermediary metabolite of the production of short-chain fatty acids, and its concentration often increases during dysbiosis. The first barrier to enteric pathogens alike is the intestinal epithelial barrier, and host maintenance and strengthening of barrier integrity is vital to homeostasis. Considering our data, we propose that activation of TC by the microbiota-produced succinate in the colon is a mechanism evolved by the host to counterbalance microbiome-derived cues that facilitate invasion by intestinal pathogens.

2.
Nat Commun ; 14(1): 5471, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37673907

RESUMO

Gut dysbiosis contributes to Alzheimer's disease (AD) pathogenesis, and Bacteroides strains are selectively elevated in AD gut microbiota. However, it remains unknown which Bacteroides species and how their metabolites trigger AD pathologies. Here we show that Bacteroides fragilis and their metabolites 12-hydroxy-heptadecatrienoic acid (12-HHTrE) and Prostaglandin E2 (PGE2) activate microglia and induce AD pathogenesis in neuronal C/EBPß transgenic mice. Recolonization of antibiotics cocktail-pretreated Thy1-C/EBPß transgenic mice with AD patient fecal samples elicits AD pathologies, associated with C/EBPß/Asparaginyl endopeptidase (AEP) pathway upregulation, microglia activation, and cognitive disorders compared to mice receiving healthy donors' fecal microbiota transplantation (FMT). Microbial 16S rRNA sequencing analysis shows higher abundance of proinflammatory Bacteroides fragilis in AD-FMT mice. Active components characterization from the sera and brains of the transplanted mice revealed that both 12-HHTrE and PGE2 activate primary microglia, fitting with poly-unsaturated fatty acid (PUFA) metabolites enrichment identified by metabolomics. Strikingly, recolonization with live but not dead Bacteroides fragilis elicited AD pathologies in Thy1-C/EBPß transgenic mice, so did 12-HHTrE or PGE2 treatment alone. Collectively, our findings support a causal role for Bacteroides fragilis and the PUFA metabolites in activating microglia and inducing AD pathologies in Thy1- C/EBPß transgenic mice.


Assuntos
Doença de Alzheimer , Infecções Bacterianas , Microbioma Gastrointestinal , Camundongos , Animais , Bacteroides fragilis/genética , Camundongos Transgênicos , Doença de Alzheimer/terapia , Dinoprostona , Microglia , RNA Ribossômico 16S/genética , Bacteroides , Hidroxiácidos
3.
FEBS Open Bio ; 13(8): 1434-1446, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37392453

RESUMO

Neutrophils are an essential component of the innate immune system; however, uncontrolled neutrophil activity can lead to inflammation and tissue damage in acute and chronic diseases. Despite inclusion of neutrophil presence and activity in clinical evaluations of inflammatory diseases, the neutrophil has been an overlooked therapeutic target. The goal of this program was to design a small molecule regulator of neutrophil trafficking and activity that fulfilled the following criteria: (a) modulates neutrophil epithelial transmigration and activation, (b) lacks systemic exposure, (c) preserves protective host immunity, and (d) is administered orally. The result of this discovery program was ADS051 (also known as BT051), a low permeability, small molecule modulator of neutrophil trafficking and activity via blockade of multidrug resistance protein 2 (MRP2)- and formyl peptide receptor 1 (FPR1)-mediated mechanisms. ADS051, based on a modified scaffold derived from cyclosporine A (CsA), was designed to have reduced affinity for calcineurin with low cell permeability and, thus, a greatly reduced ability to inhibit T-cell function. In cell-based assays, ADS051 did not inhibit cytokine secretion from activated human T cells. Furthermore, in preclinical models, ADS051 showed limited systemic absorption (<1% of total dose) after oral administration, and assessment of ADS051 in human, cell-based systems demonstrated inhibition of neutrophil epithelial transmigration. In addition, preclinical toxicology studies in rats and monkeys receiving daily oral doses of ADS051 for 28 days did not reveal safety risks or ADS051-related toxicity. Our results to date support the clinical development of ADS051 in patients with neutrophil-mediated inflammatory diseases.


Assuntos
Inflamação , Neutrófilos , Humanos , Ratos , Animais , Inflamação/tratamento farmacológico
4.
Front Endocrinol (Lausanne) ; 13: 1010806, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36387852

RESUMO

Estrogens protect against weight gain and metabolic disruption in women and female rodents. Aberrations in the gut microbiota composition are linked to obesity and metabolic disorders. Furthermore, estrogen-mediated protection against diet-induced metabolic disruption is associated with modifications in gut microbiota. In this study, we tested if estradiol (E2)-mediated protection against obesity and metabolic disorders in female mice is dependent on gut microbiota. Specifically, we tested if fecal microbiota transplantation (FMT) from E2-treated lean female mice, supplemented with or without Akkermansia muciniphila, prevented high fat diet (HFD)-induced body weight gain, fat mass gain, and hyperglycemia in female recipients. FMT from, and cohousing with, E2-treated lean donors was not sufficient to transfer the metabolic benefits to the E2-deficient female recipients. Moreover, FMT from lean donors supplemented with A. muciniphila exacerbated HFD-induced hyperglycemia in E2-deficient recipients, suggesting its detrimental effect on the metabolic health of E2-deficient female rodents fed a HFD. Given that A. muciniphila attenuates HFD-induced metabolic insults in males, the present findings suggest a sex difference in the impact of this microbe on metabolic health.


Assuntos
Dieta Hiperlipídica , Hiperglicemia , Feminino , Camundongos , Masculino , Animais , Dieta Hiperlipídica/efeitos adversos , Akkermansia , Transplante de Microbiota Fecal , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/terapia , Obesidade/metabolismo , Aumento de Peso
5.
Front Microbiol ; 13: 1009440, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246273

RESUMO

The oropharyngeal microbiome, the collective genomes of the community of microorganisms that colonizes the upper respiratory tract, is thought to influence the clinical course of infection by respiratory viruses, including Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent of Coronavirus Infectious Disease 2019 (COVID-19). In this study, we examined the oropharyngeal microbiome of suspected COVID-19 patients presenting to the Emergency Department and an inpatient COVID-19 unit with symptoms of acute COVID-19. Of 115 initially enrolled patients, 50 had positive molecular testing for COVID-19+ and had symptom duration of 14 days or less. These patients were analyzed further as progression of disease could most likely be attributed to acute COVID-19 and less likely a secondary process. Of these, 38 (76%) went on to require some form of supplemental oxygen support. To identify functional patterns associated with respiratory illness requiring respiratory support, we applied an interpretable random forest classification machine learning pipeline to shotgun metagenomic sequencing data and select clinical covariates. When combined with clinical factors, both species and metabolic pathways abundance-based models were found to be highly predictive of the need for respiratory support (F1-score 0.857 for microbes and 0.821 for functional pathways). To determine biologically meaningful and highly predictive signals in the microbiome, we applied the Stable and Interpretable RUle Set to the output of the models. This analysis revealed that low abundance of two commensal organisms, Prevotella salivae or Veillonella infantium (< 4.2 and 1.7% respectively), and a low abundance of a pathway associated with LPS biosynthesis (< 0.1%) were highly predictive of developing the need for acute respiratory support (82 and 91.4% respectively). These findings suggest that the composition of the oropharyngeal microbiome in COVID-19 patients may play a role in determining who will suffer from severe disease manifestations.

6.
Gut Microbes ; 14(1): 2127633, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36175830

RESUMO

The gastrointestinal (GI) tract is the reservoir for multidrug resistant (MDR) pathogens, specifically carbapenem-resistant (CR) Klebsiella pneumoniae and other Enterobacteriaceae, which often lead to the spread of antimicrobial resistance genes, severe extraintestinal infections, and lethal outcomes. Selective GI decolonization has been proposed as a new strategy for preventing transmission to other body sites and minimizing spreading to susceptible individuals. Here, we purify the to-date uncharacterized class IIb microcin I47 (MccI47) and demonstrate potent inhibition of numerous Enterobacteriaceae, including multidrug-resistant clinical isolates, in vitro at concentrations resembling those of commonly prescribed antibiotics. We then genetically modify the probiotic bacterium Escherichia coli Nissle 1917 (EcN) to produce MccI47 from a stable multicopy plasmid by using MccI47 toxin production in a counterselection mechanism to engineer one of the native EcN plasmids, which renders provisions for inducible expression and plasmid selection unnecessary. We then test the clinical relevance of the MccI47-producing engineered EcN in a murine CR K. pneumoniae colonization model and demonstrate significant MccI47-dependent reduction of CR K. pneumoniae abundance after seven days of daily oral live biotherapeutic administration without disruption of the resident microbiota. This study provides the first demonstration of MccI47 as a potent antimicrobial against certain Enterobacteriaceae, and its ability to significantly reduce the abundance of CR K. pneumoniae in a preclinical animal model, when delivered from an engineered live biotherapeutic product. This study serves as the foundational step toward the use of engineered live biotherapeutic products aimed at the selective removal of MDR pathogens from the GI tract.


Assuntos
Infecções por Escherichia coli , Microbioma Gastrointestinal , Animais , Camundongos , Antibacterianos/farmacologia , Bacteriocinas , Carbapenêmicos/farmacologia , Enterobacteriaceae/genética , Escherichia coli/genética , Klebsiella pneumoniae/genética
7.
mBio ; 13(4): e0199322, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35968955

RESUMO

P-glycoprotein (P-gp) is a key component of the intestinal epithelium playing a pivotal role in removal of toxins and efflux of endocannabinoids to prevent excessive inflammation and sustain homeostasis. Recent studies revealed butyrate and secondary bile acids, produced by the intestinal microbiome, potentiate the induction of functional P-gp expression. We now aim to determine the molecular mechanism by which this functional microbiome output regulates P-gp. RNA sequencing of intestinal epithelial cells responding to butyrate and secondary bile acids in combination discovered a unique transcriptional program involving multiple pathways that converge on P-gp induction. Using shRNA knockdown and CRISPR/Cas9 knockout cell lines, as well as mouse models, we confirmed the RNA sequencing findings and discovered a role for intestinal HNF4α in P-gp regulation. These findings shed light on a sophisticated signaling network directed by intestinal microbial metabolites that orchestrate P-gp expression and highlight unappreciated connections between multiple pathways linked to colonic health. IMPORTANCE Preventing aberrant inflammation is essential to maintaining homeostasis in the mammalian intestine. Although P-glycoprotein (P-gp) expression in the intestine is critical for protecting the intestinal epithelium from toxins and damage due to neutrophil infiltration, its regulation in the intestine is poorly understood. Findings presented in our current study have now uncovered a sophisticated and heretofore unappreciated intracellular signaling network or "reactome" directed by intestinal microbial metabolites that orchestrate regulation of P-gp. Not only do we confirm the role of histone deacetylases (HDAC) inhibition and nuclear receptor activation in P-gp induction by butyrate and bile acids, but we also discovered new signaling pathways and transcription factors that are uniquely activated in response to the combination of microbial metabolites. Such findings shed new light into a multi-tiered network that maintains P-gp expression in the intestine in the context of the fluctuating commensal microbiome, to sustain a homeostatic tone in the absence of infection or insult.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Mucosa Intestinal , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Ácidos e Sais Biliares/metabolismo , Butiratos/metabolismo , Inflamação , Mucosa Intestinal/metabolismo , Mamíferos/metabolismo , Camundongos
9.
J Clin Invest ; 132(17)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35727638

RESUMO

Epithelial cells lining mucosal surfaces of the gastrointestinal and respiratory tracts uniquely express ERN2/IRE1ß, a paralogue of the most evolutionarily conserved endoplasmic reticulum stress sensor, ERN1/IRE1α. How ERN2 functions at the host-environment interface and why a second paralogue evolved remain incompletely understood. Using conventionally raised and germ-free Ern2-/- mice, we found that ERN2 was required for microbiota-induced goblet cell maturation and mucus barrier assembly in the colon. This occurred only after colonization of the alimentary tract with normal gut microflora, which induced Ern2 expression. ERN2 acted by splicing Xbp1 mRNA to expand ER function and prevent ER stress in goblet cells. Although ERN1 can also splice Xbp1 mRNA, it did not act redundantly to ERN2 in this context. By regulating assembly of the colon mucus layer, ERN2 further shaped the composition of the gut microbiota. Mice lacking Ern2 had a dysbiotic microbial community that failed to induce goblet cell development and increased susceptibility to colitis when transferred into germ-free WT mice. These results show that ERN2 evolved at mucosal surfaces to mediate crosstalk between gut microbes and the colonic epithelium required for normal homeostasis and host defense.


Assuntos
Células Caliciformes , Proteínas de Membrana , Microbiota , Proteínas Serina-Treonina Quinases , Animais , Colo/metabolismo , Endorribonucleases/genética , Endorribonucleases/metabolismo , Células Caliciformes/metabolismo , Mucosa Intestinal/metabolismo , Proteínas de Membrana/genética , Camundongos , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/metabolismo
10.
JMIR Form Res ; 6(6): e37858, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35658093

RESUMO

BACKGROUND: Public health scientists have used spatial tools such as web-based Geographical Information System (GIS) applications to monitor and forecast the progression of the COVID-19 pandemic and track the impact of their interventions. The ability to track SARS-CoV-2 variants and incorporate the social determinants of health with street-level granularity can facilitate the identification of local outbreaks, highlight variant-specific geospatial epidemiology, and inform effective interventions. We developed a novel dashboard, the University of Massachusetts' Graphical user interface for Geographic Information (MAGGI) variant tracking system that combines GIS, health-associated sociodemographic data, and viral genomic data to visualize the spatiotemporal incidence of SARS-CoV-2 variants with street-level resolution while safeguarding protected health information. The specificity and richness of the dashboard enhance the local understanding of variant introductions and transmissions so that appropriate public health strategies can be devised and evaluated. OBJECTIVE: We developed a web-based dashboard that simultaneously visualizes the geographic distribution of SARS-CoV-2 variants in Central Massachusetts, the social determinants of health, and vaccination data to support public health efforts to locally mitigate the impact of the COVID-19 pandemic. METHODS: MAGGI uses a server-client model-based system, enabling users to access data and visualizations via an encrypted web browser, thus securing patient health information. We integrated data from electronic medical records, SARS-CoV-2 genomic analysis, and public health resources. We developed the following functionalities into MAGGI: spatial and temporal selection capability by zip codes of interest, the detection of variant clusters, and a tool to display variant distribution by the social determinants of health. MAGGI was built on the Environmental Systems Research Institute ecosystem and is readily adaptable to monitor other infectious diseases and their variants in real-time. RESULTS: We created a geo-referenced database and added sociodemographic and viral genomic data to the ArcGIS dashboard that interactively displays Central Massachusetts' spatiotemporal variants distribution. Genomic epidemiologists and public health officials use MAGGI to show the occurrence of SARS-CoV-2 genomic variants at high geographic resolution and refine the display by selecting a combination of data features such as variant subtype, subject zip codes, or date of COVID-19-positive sample collection. Furthermore, they use it to scale time and space to visualize association patterns between socioeconomics, social vulnerability based on the Centers for Disease Control and Prevention's social vulnerability index, and vaccination rates. We launched the system at the University of Massachusetts Chan Medical School to support internal research projects starting in March 2021. CONCLUSIONS: We developed a COVID-19 variant surveillance dashboard to advance our geospatial technologies to study SARS-CoV-2 variants transmission dynamics. This real-time, GIS-based tool exemplifies how spatial informatics can support public health officials, genomics epidemiologists, infectious disease specialists, and other researchers to track and study the spread patterns of SARS-CoV-2 variants in our communities.

11.
Blood Adv ; 6(12): 3821-3834, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35500221

RESUMO

Interferon γ (IFNγ) is an essential and pleiotropic activator of human monocytes, but little is known about the changes in cellular metabolism required for IFNγ-induced activation. We sought to elucidate the mechanisms by which IFNγ reprograms monocyte metabolism to support its immunologic activities. We found that IFNγ increased oxygen consumption rates (OCR) in monocytes, indicative of reactive oxygen species generation by both mitochondria and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Transcriptional profiling revealed that this oxidative phenotype was driven by IFNγ-induced reprogramming of NAD+ metabolism, which is dependent on nicotinamide phosphoribosyltransferase (NAMPT)-mediated NAD+ salvage to generate NADH and NADPH for oxidation by mitochondrial complex I and NADPH oxidase, respectively. Consistent with this pathway, monocytes from patients with gain-of-function mutations in STAT1 demonstrated higher-than-normal OCR, whereas chemical or genetic disruption of mitochondrial complex I (rotenone treatment or Leigh syndrome patient monocytes) or NADPH oxidase (diphenyleneiodonium treatment or chronic granulomatous disease [CGD] patient monocytes) reduced OCR. Interestingly, inhibition of NAMPT in healthy monocytes completely abrogated the IFNγ-induced oxygen consumption, comparable to levels observed in CGD monocytes. These data identify an IFNγ-induced, NAMPT-dependent, NAD+ salvage pathway that is critical for IFNγ activation of human monocytes.


Assuntos
Doença Granulomatosa Crônica , Monócitos , Doença Granulomatosa Crônica/metabolismo , Humanos , Interferon gama/farmacologia , Monócitos/metabolismo , NAD/metabolismo , NADP/metabolismo , NADPH Oxidases/metabolismo , Explosão Respiratória
12.
Gut Microbes ; 14(1): 2046244, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35311458

RESUMO

Diet is a modifiable, noninvasive, inexpensive behavior that is crucial in shaping the intestinal microbiome. A microbiome "imbalance" or dysbiosis in inflammatory bowel disease (IBD) is linked to inflammation. Here, we aim to define the impact of specific foods on bacterial species commonly depleted in patients with IBD to better inform dietary treatment. We performed a single-arm, pre-post intervention trial. After a baseline period, a dietary intervention with the IBD-Anti-Inflammatory Diet (IBD-AID) was initiated. We collected stool and blood samples and assessed dietary intake throughout the study. We applied advanced computational approaches to define and model complex interactions between the foods reported and the microbiome. A dense dataset comprising 553 dietary records and 340 stool samples was obtained from 22 participants. Consumption of prebiotics, probiotics, and beneficial foods correlated with increased abundance of Clostridia and Bacteroides, commonly depleted in IBD cohorts. We further show that specific foods categorized as prebiotics or adverse foods are correlated to levels of cytokines in serum (i.e., GM-CSF, IL-6, IL-8, TNF-alpha) that play a central role in IBD pathogenesis. By using robust predictive analytics, this study represents the first steps to detangle diet-microbiome and diet-immune interactions to inform personalized nutrition for patients suffering from dysbiosis-related IBD.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Dieta , Disbiose/terapia , Humanos , Doenças Inflamatórias Intestinais/microbiologia , Projetos Piloto , Prebióticos
13.
medRxiv ; 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35262096

RESUMO

The clinical course of infection due to respiratory viruses such as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2), the causative agent of Coronavirus Disease 2019 (COVID-19) is thought to be influenced by the community of organisms that colonizes the upper respiratory tract, the oropharyngeal microbiome. In this study, we examined the oropharyngeal microbiome of suspected COVID-19 patients presenting to the Emergency Department and an inpatient COVID-19 unit with symptoms of acute COVID-19. Of 115 enrolled patients, 74 were confirmed COVID-19+ and 50 had symptom duration of 14 days or less; 38 acute COVID-19+ patients (76%) went on to require respiratory support. Although no microbiome features were found to be significantly different between COVID-19+ and COVID-19-patients, when we conducted random forest classification modeling (RFC) to predict the need of respiratory support for the COVID-19+ patients our analysis identified a subset of organisms and metabolic pathways whose relative abundance, when combined with clinical factors (such as age and Body Mass Index), was highly predictive of the need for respiratory support (F1 score 0.857). Microbiome Multivariable Association with Linear Models (MaAsLin2) analysis was then applied to the features identified as predicative of the need for respiratory support by the RFC. This analysis revealed reduced abundance of Prevotella salivae and metabolic pathways associated with lipopolysaccharide and mycolic acid biosynthesis to be the strongest predictors of patients requiring respiratory support. These findings suggest that composition of the oropharyngeal microbiome in COVID-19 may play a role in determining who will suffer from severe disease manifestations. Importance: The microbial community that colonizes the upper airway, the oropharyngeal microbiome, has the potential to affect how patients respond to respiratory viruses such as SARS-CoV2, the causative agent of COVID-19. In this study, we investigated the oropharyngeal microbiome of COVID-19 patients using high throughput DNA sequencing performed on oral swabs. We combined patient characteristics available at intake such as medical comorbidities and age, with measured abundance of bacterial species and metabolic pathways and then trained a machine learning model to determine what features are predicative of patients needing respiratory support in the form of supplemental oxygen or mechanical ventilation. We found that decreased abundance of some bacterial species and increased abundance of pathways associated bacterial products biosynthesis was highly predictive of needing respiratory support. This suggests that the oropharyngeal microbiome affects disease course in COVID-19 and could be targeted for diagnostic purposes to determine who may need oxygen, or therapeutic purposes such as probiotics to prevent severe COVID-19 disease manifestations.

14.
mBio ; 12(6): e0283321, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34724811

RESUMO

Shigella spp. are highly adapted pathogens that cause bacillary dysentery in human and nonhuman primates. An unusual feature of Shigella pathogenesis is that this organism invades the colonic epithelia from the basolateral pole. Therefore, it has evolved the ability to disrupt the intestinal epithelial barrier to reach the basolateral surface. We have shown previously that the secreted serine protease A (SepA), which belongs to the family of serine protease autotransporters of Enterobacteriaceae, is responsible for the initial destabilization of the intestinal epithelial barrier that facilitates Shigella invasion. However, the mechanisms used by SepA to regulate this process remain unknown. To investigate the protein targets cleaved by SepA in the intestinal epithelium, we incubated a sample of homogenized human colon with purified SepA or with a catalytically inactive mutant of this protease. We discovered that SepA targets an array of 18 different proteins, including alpha-1 antitrypsin (AAT), a major circulating serine proteinase inhibitor in humans. In contrast to other serine proteases, SepA cleaved AAT without forming an inhibiting complex, which resulted in the generation of a neutrophil chemoattractant. We demonstrated that the products of the AAT-SepA reaction induce a mild but significant increase in neutrophil transepithelial migration in vitro. Moreover, the presence of AAT during Shigella infection stimulated neutrophil migration and dramatically enhanced the number of bacteria invading the intestinal epithelium in a SepA-dependent manner. We conclude that by cleaving AAT, SepA releases a chemoattractant that promotes neutrophil migration, which in turn disrupts the intestinal epithelial barrier to enable Shigella invasion. IMPORTANCEShigella is the second leading cause of diarrheal death globally. In this study, we identified the host protein targets of SepA, Shigella's major protein secreted in culture. We demonstrated that by cleaving AAT, a serine protease inhibitor important to protect surrounding tissue at inflammatory sites, SepA releases a neutrophil chemoattractant that enhances Shigella invasion. Moreover, SepA degraded AAT without becoming inhibited by the cleaved product, and SepA catalytic activity was enhanced at higher concentrations of AAT. Activation of SepA by an excess of AAT may be physiologically relevant at the early stages of Shigella infection, when the amount of synthesized SepA is very low compared to the concentration of AAT in the intestinal lumen. This observation may also help to explain the adeptness of Shigella infectivity at low dose, despite the requirement of reaching the basolateral side to invade and colonize the colonic epithelium.


Assuntos
Proteínas de Bactérias/metabolismo , Fatores Quimiotáticos/metabolismo , Disenteria Bacilar/metabolismo , Células Epiteliais/microbiologia , Neutrófilos/citologia , Shigella/enzimologia , alfa 1-Antitripsina/metabolismo , Proteínas de Bactérias/genética , Movimento Celular , Fatores Quimiotáticos/genética , Disenteria Bacilar/microbiologia , Disenteria Bacilar/fisiopatologia , Células Epiteliais/metabolismo , Humanos , Intestinos/citologia , Intestinos/metabolismo , Intestinos/microbiologia , Neutrófilos/metabolismo , Shigella/classificação , Shigella/genética , alfa 1-Antitripsina/genética
15.
Microbiome ; 9(1): 183, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34493329

RESUMO

BACKGROUND: P-glycoprotein (P-gp) plays a critical role in protection of the intestinal epithelia by mediating efflux of drugs/xenobiotics from the intestinal mucosa into the gut lumen. Recent studies bring to light that P-gp also confers a critical link in communication between intestinal mucosal barrier function and the innate immune system. Yet, despite knowledge for over 10 years that P-gp plays a central role in gastrointestinal homeostasis, the precise molecular mechanism that controls its functional expression and regulation remains unclear. Here, we assessed how the intestinal microbiome drives P-gp expression and function. RESULTS: We have identified a "functional core" microbiome of the intestinal gut community, specifically genera within the Clostridia and Bacilli classes, that is necessary and sufficient for P-gp induction in the intestinal epithelium in mouse models. Metagenomic analysis of this core microbial community revealed that short-chain fatty acid and secondary bile acid production positively associate with P-gp expression. We have further shown these two classes of microbiota-derived metabolites synergistically upregulate P-gp expression and function in vitro and in vivo. Moreover, in patients suffering from ulcerative colitis (UC), we find diminished P-gp expression coupled to the reduction of epithelial-derived anti-inflammatory endocannabinoids and luminal content (e.g., microbes or their metabolites) with a reduced capability to induce P-gp expression. CONCLUSION: Overall, by means of both in vitro and in vivo studies as well as human subject sample analysis, we identify a mechanistic link between cooperative functional outputs of the complex microbial community and modulation of P-gp, an epithelial component, that functions to suppress overactive inflammation to maintain intestinal homeostasis. Hence, our data support a new cross-talk paradigm in microbiome regulation of mucosal inflammation. Video abstract.


Assuntos
Microbioma Gastrointestinal , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Animais , Microbioma Gastrointestinal/genética , Homeostase , Humanos , Mucosa Intestinal , Camundongos
16.
JCI Insight ; 6(20)2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34403368

RESUMO

In the COVID-19 pandemic, caused by SARS-CoV-2, many individuals experience prolonged symptoms, termed long-lasting COVID-19 symptoms (long COVID). Long COVID is thought to be linked to immune dysregulation due to harmful inflammation, with the exact causes being unknown. Given the role of the microbiome in mediating inflammation, we aimed to examine the relationship between the oral microbiome and the duration of long COVID symptoms. Tongue swabs were collected from patients presenting with COVID-19 symptoms. Confirmed infections were followed until resolution of all symptoms. Bacterial composition was determined by metagenomic sequencing. We used random forest modeling to identify microbiota and clinical covariates that are associated with long COVID symptoms. Of the patients followed, 63% developed ongoing symptomatic COVID-19 and 37% went on to long COVID. Patients with prolonged symptoms had significantly higher abundances of microbiota that induced inflammation, such as members of the genera Prevotella and Veillonella, which, of note, are species that produce LPS. The oral microbiome of patients with long COVID was similar to that of patients with chronic fatigue syndrome. Altogether, our findings suggest an association with the oral microbiome and long COVID, revealing the possibility that dysfunction of the oral microbiome may have contributed to this draining disease.


Assuntos
COVID-19/complicações , Disbiose , Inflamação , Microbiota , Idoso , Bactérias/classificação , Feminino , Microbioma Gastrointestinal , Humanos , Masculino , Pessoa de Meia-Idade , SARS-CoV-2 , Síndrome de COVID-19 Pós-Aguda
17.
J Gerontol A Biol Sci Med Sci ; 76(11): 1930-1938, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34125200

RESUMO

Older adults in nursing homes (NHs) have increased frailty, medication, and antimicrobial exposures, all factors that are known to affect the composition of gut microbiota. Our objective was to define which factors have the greatest association with the NH resident gut microbiota, explore patterns of dysbiosis and compositional changes in gut microbiota over time in this environment. We collected serial stool samples from NH residents. Residents were assessed using the Mini Nutritional Assessment tool and Clinical Frailty Scale. Bacterial composition of resident stool samples was determined by metagenomic sequencing. We used mixed-effect random forest modeling to identify clinical covariates that associate with microbiota. We enrolled and followed 166 residents from 5 NHs collecting 512 stool samples and following 15 residents for > 1 year. Medications, particularly psychoactive and antihypertensive medications, had the greatest effect on the microbiota. Age and frailty also contributed, and were associated with increased and decreased diversity, respectively. The microbiota of residents who had lived in the NH for > 1 year were enriched in inflammatory and pathogenic species and reduced in anti-inflammatory and symbiotic species. We observed intraindividual stability of the microbiome among older adults who had lived in the NH already for >1 year followed with sample collections 1 year apart. Older adult NH gut microbiome is heavily influenced by medications, age, and frailty. This microbiome is influenced by the length of NH residency with dysbiosis becoming evident at 12 months, however, after this point there is demonstrated relative stability over time.


Assuntos
Fragilidade , Microbioma Gastrointestinal , Microbiota , Idoso , Disbiose , Humanos , Casas de Saúde
18.
Immunity ; 54(6): 1137-1153.e8, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34051146

RESUMO

Alterations in the cGAS-STING DNA-sensing pathway affect intestinal homeostasis. We sought to delineate the functional role of STING in intestinal inflammation. Increased STING expression was a feature of intestinal inflammation in mice with colitis and in humans afflicted with inflammatory bowel disease. Mice bearing an allele rendering STING constitutively active exhibited spontaneous colitis and dysbiosis, as well as progressive chronic intestinal inflammation and fibrosis. Bone marrow chimera experiments revealed STING accumulation in intestinal macrophages and monocytes as the initial driver of inflammation. Depletion of Gram-negative bacteria prevented STING accumulation in these cells and alleviated intestinal inflammation. STING accumulation occurred at the protein rather than transcript level, suggesting post-translational stabilization. We found that STING was ubiquitinated in myeloid cells, and this K63-linked ubiquitination could be elicited by bacterial products, including cyclic di-GMP. Our findings suggest a positive feedback loop wherein dysbiosis foments the accumulation of STING in intestinal myeloid cells, driving intestinal inflammation.


Assuntos
Colite/imunologia , Disbiose/imunologia , Imunidade Inata/imunologia , Proteínas de Membrana/imunologia , Células Mieloides/imunologia , Ubiquitinação/imunologia , Animais , Estudos de Casos e Controles , Feminino , Humanos , Inflamação/imunologia , Intestinos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/imunologia
19.
Gut Microbes ; 13(1): 1-15, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33764826

RESUMO

Clostridioides difficile disproportionally affects the elderly living in nursing homes (NHs). Our objective was to explore the prevalence of C. difficile in NH elders, over time and to determine whether the microbiome or other clinical factors are associated with C. difficile colonization.We collected serial stool samples from NH residents. C. difficile prevalence was determined by quantitative polymerase-chain reaction detection of Toxin genes tcdA and tcdB; microbiome composition was determined by shotgun metagenomic sequencing. We used mixed-effect random forest modeling machine to determine bacterial taxa whose abundance is associated with C. difficile prevalence while controlling for clinical covariates including demographics, medications, and past medical history.We enrolled 167 NH elders who contributed 506 stool samples. Of the 123 elders providing multiple samples, 30 (24.4%) elders yielded multiple samples in which C. difficile was detected and 78 (46.7%) had at least one C. difficile positive sample. Elders with C. difficile positive samples were characterized by increased abundances of pathogenic or inflammatory-associated bacterial taxa and by lower abundances of taxa with anti-inflammatory or symbiotic properties. Proton pump inhibitor (PPI) use is associated with lower prevalence of C. difficile (Odds Ratio 0.46; 95%CI, 0.22-0.99) and the abundance of bacterial species with known beneficial effects was higher in PPI users and markedly lower in elders with high C. difficile prevalence.C. difficile is prevalent among NH elders and a dysbiotic gut microbiome associates with C. difficile colonization status. Manipulating the gut microbiome may prove to be a key strategy in the reduction of C. difficile in the NH.


Assuntos
Infecções Assintomáticas/epidemiologia , Clostridioides difficile/isolamento & purificação , Infecções por Clostridium/epidemiologia , Disbiose/microbiologia , Microbioma Gastrointestinal , Casas de Saúde , Idoso , Idoso de 80 Anos ou mais , Clostridioides difficile/crescimento & desenvolvimento , Infecções por Clostridium/microbiologia , Fezes/microbiologia , Feminino , Humanos , Masculino , Prevalência , Inibidores da Bomba de Prótons/uso terapêutico
20.
Gastroenterology ; 160(2): 507-523, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33307030

RESUMO

The human gut microbiome is a collection of bacteria, protozoa, fungi, and viruses that coexist in our bodies and are essential in protective, metabolic, and physiologic functions of human health. Gut dysbiosis has traditionally been linked to increased risk of infection, but imbalances within the intestinal microbial community structure that correlate with untoward inflammatory responses are increasingly recognized as being involved in disease processes that affect many organ systems in the body. Furthermore, it is becoming more apparent that the connection between gut dysbiosis and age-related diseases may lie in how the gut microbiome communicates with both the intestinal mucosa and the systemic immune system, given that these networks have a common interconnection to frailty. We therefore discuss recent advances in our understanding of the important role the microbiome plays in aging and how this knowledge opens the door for potential novel therapeutics aimed at shaping a less dysbiotic microbiome to prevent or treat age-related diseases.


Assuntos
Envelhecimento/fisiologia , Disbiose/microbiologia , Fragilidade/fisiopatologia , Microbioma Gastrointestinal/fisiologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Idoso , Animais , Modelos Animais de Doenças , Disbiose/induzido quimicamente , Disbiose/fisiopatologia , Fragilidade/microbiologia , Saúde , Desenvolvimento Humano/fisiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...