Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 227(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38380449

RESUMO

Declining body size in fishes and other aquatic ectotherms associated with anthropogenic climate warming has significant implications for future fisheries yields, stock assessments and aquatic ecosystem stability. One proposed mechanism seeking to explain such body-size reductions, known as the gill oxygen limitation (GOL) hypothesis, has recently been used to model future impacts of climate warming on fisheries but has not been robustly empirically tested. We used brook trout (Salvelinus fontinalis), a fast-growing, cold-water salmonid species of broad economic, conservation and ecological value, to examine the GOL hypothesis in a long-term experiment quantifying effects of temperature on growth, resting metabolic rate (RMR), maximum metabolic rate (MMR) and gill surface area (GSA). Despite significantly reduced growth and body size at an elevated temperature, allometric slopes of GSA were not significantly different than 1.0 and were above those for RMR and MMR at both temperature treatments (15°C and 20°C), contrary to GOL expectations. We also found that the effect of temperature on RMR was time-dependent, contradicting the prediction that heightened temperatures increase metabolic rates and reinforcing the importance of longer-term exposures (e.g. >6 months) to fully understand the influence of acclimation on temperature-metabolic rate relationships. Our results indicate that although oxygen limitation may be important in some aspects of temperature-body size relationships and constraints on metabolic supply may contribute to reduced growth in some cases, it is unlikely that GOL is a universal mechanism explaining temperature-body size relationships in aquatic ectotherms. We suggest future research focus on alternative mechanisms underlying temperature-body size relationships, and that projections of climate change impacts on fisheries yields using models based on GOL assumptions be interpreted with caution.


Assuntos
Salmonidae , Animais , Ecossistema , Oxigênio , Brânquias , Temperatura , Truta , Água , Tamanho Corporal
2.
J Exp Zool A Ecol Integr Physiol ; 341(1): 107-117, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38010889

RESUMO

In marine habitats, Atlantic salmon (Salmo salar) imbibe seawater (SW) to replace body water that is passively lost to the ambient environment. By desalinating consumed SW, the esophagus enables solute-linked water absorption across the intestinal epithelium. The processes underlying esophageal desalination in salmon and their hormonal regulation during smoltification and following SW exposure are unresolved. To address this, we considered whether two Na+ /H+ exchangers (Nhe2 and -3) expressed in the esophagus contribute to the uptake of Na+ from lumenal SW. There were no seasonal changes in esophageal nhe2 or -3 expression during smoltification; however, nhe3 increased following 48 h of SW exposure in May. Esophageal nhe2, -3, and growth hormone receptor b1 were elevated in smolts acclimated to SW for 2.5 weeks. Treatment with cortisol stimulated branchial Na+ /K+ -ATPase (Nka) activity, and Na+ /K+ /2Cl- cotransporter 1 (nkcc1), cystic fibrosis transmembrane regulator 1 (cftr1), and nka-α1b expression. Esophageal nhe2, but not nhe3 expression, was stimulated by cortisol. In anterior intestine, cortisol stimulated nkcc2, cftr2, and nka-α1b. Our findings indicate that salinity stimulates esophageal nhe2 and -3, and that cortisol coordinates the expression of esophageal, intestinal, and branchial solute transporters to support the SW adaptability of Atlantic salmon.


Assuntos
Hormônio do Crescimento , Salmo salar , Animais , Hormônio do Crescimento/metabolismo , Hidrocortisona , Salinidade , ATPase Trocadora de Sódio-Potássio/metabolismo , Mucosa Intestinal , Sódio
3.
Conserv Physiol ; 11(1): coad092, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38076342

RESUMO

Rapid and accelerating warming of salmon habitat has the potential to lower productivity of Pacific salmon (Oncorhynchus species) populations. Heat stress biomarkers can indicate where warming is most likely affecting fish populations; however, we often lack clear classifications that separate individuals with and without heat stress needed to make these tools operational. We conducted a heat exposure experiment with trials lasting 12 or 36 h using juvenile Chinook salmon (Oncorhynchus tshawytscha) and coho salmon (Oncorhynchus kisutch) to validate heat stress biomarkers in white muscle. Following habituation to 13°C, individuals were exposed to water temperatures that increased to 15°C, 17°C, 19°C, 21°C or 23°C. Heat shock protein 70 abundance (HSP70 measured by ELISA) and transcription of 13 genes (mRNA measured by qPCR) including three heat shock protein genes (hsp70, hsp90, hsp27) were measured. A distinct heat stress response was apparent by 21°C in juvenile Chinook salmon and 23°C in juvenile coho salmon using HSP70. A threshold for heat stress classification in Chinook salmon of > 2 ng HSP70 mg.1 total protein identified heat stress in 100% of 21 and 23°C treated individuals compared to 4% in cooler treatments. For coho salmon, > 3 ng HSP70 mg.1 total protein identified heat stress in 100% of 23°C treated individuals compared to 4% in cooler treatments. Transcription from a panel of genes separated individuals between cooler and stressful temperature experiences (≥21°C for Chinook salmon and ≥23°C for coho salmon) with ~ 85% correct classification. Our findings indicate that juvenile Chinook salmon were more temperature-sensitive than juvenile coho salmon and support the use of a HSP70 threshold sampled from muscle for assessing heat stress in individual wild Pacific salmon with an option for non-lethal biopsies for spawning adults.

4.
Mol Cell Endocrinol ; 571: 111937, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37086859

RESUMO

How the growth hormone (GH)/insulin-like growth factor (IGF) system affects osmoregulation in basal vertebrates remains unknown. We examined changes in the expression of components of the GH/IGF axis and gill ion transporters during metamorphosis and following seawater (SW) exposure of sea lamprey. During metamorphosis, increases in gill nka and nkcc1 and salinity tolerance were accompanied by increases in pituitary gh, liver igf1, gill ghr and igf1, but not liver ghr. SW exposure of fully metamorphosed sea lamprey resulted in slight increases in plasma chloride concentrations after SW exposure, indicating a high level of SW tolerance, but no major changes in mRNA levels of gill ion transporters or components of the GH/IGF axis. Our results indicate that metamorphosis is a critical point in the lifecycle of sea lamprey for stimulation of the GH/IGF axis and is temporally associated with and likely promotes metamorphosis and SW tolerance.


Assuntos
Hormônio do Crescimento Humano , Petromyzon , Animais , Hormônio do Crescimento/metabolismo , Petromyzon/metabolismo , Hormônio do Crescimento Humano/metabolismo , Aclimatação/fisiologia , Água do Mar , Brânquias/metabolismo
5.
Gen Comp Endocrinol ; 339: 114290, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37088167

RESUMO

In vertebrates, the hypothalamic-pituitaryadrenal/interrenal (HPA/HPI) axis is a highly conserved endocrine axis that regulates glucocorticoid production via signaling by corticotropin releasing hormone (CRH) and adrenocorticotropic hormone (ACTH). Once activated by ACTH, Gs protein-coupled melanocortin 2 receptors (Mc2r) present in corticosteroidogenic cells stimulate expression of steroidogenic acute regulatory protein (Star), which initiates steroid biosynthesis. In the present study, we examined the tissue distribution of genes involved in HPI axis signaling and steroidogenesis in the Atlantic sturgeon (Acipenser oxyrinchus) and provided the first functional characterization of Mc2r in sturgeon. Mc2r of A. oxyrinchus and the sterlet sturgeon (Acipenser ruthenus) are co-dependent on interaction with the melanocortin receptor accessory protein 1 (Mrap1) and highly selective for human (h) ACTH over other melanocortin ligands. A. oxyrinchus expresses key genes involved in HPI axis signaling in a tissue-specific manner that is indicative of the presence of a complete HPI axis in sturgeon. Importantly, we co-localized mc2r, mrap1, and star mRNA expression to the head kidney, indicating that this is possibly a site of ACTH-mediated corticosteroidogenesis in sturgeon. Our results are discussed in the context of other studies on the HPI axis of basal bony vertebrates, which, when taken together, demonstrate a need to better resolve the evolution of HPI axis signaling in vertebrates.


Assuntos
Hormônio Adrenocorticotrópico , Peixes , Animais , Humanos , Hormônio Adrenocorticotrópico/metabolismo , Peixes/genética , Peixes/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Hipotálamo/metabolismo , Receptor Tipo 2 de Melanocortina/genética , Receptor Tipo 2 de Melanocortina/metabolismo
6.
Proc Natl Acad Sci U S A ; 119(40): e2212196119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161944

RESUMO

We used a representative of one of the oldest extant vertebrate lineages (jawless fish or agnathans) to investigate the early evolution and function of the growth hormone (GH)/prolactin (PRL) family. We identified a second member of the GH/PRL family in an agnathan, the sea lamprey (Petromyzon marinus). Structural, phylogenetic, and synteny analyses supported the identification of this hormone as prolactin-like (PRL-L), which has led to added insight into the evolution of the GH/PRL family. At least two ancestral genes were present in early vertebrates, which gave rise to distinct GH and PRL-L genes in lamprey. A series of gene duplications, gene losses, and chromosomal rearrangements account for the diversity of GH/PRL-family members in jawed vertebrates. Lamprey PRL-L is produced in the proximal pars distalis of the pituitary and is preferentially bound by the lamprey PRL receptor, whereas lamprey GH is preferentially bound by the lamprey GH receptor. Pituitary PRL-L messenger RNA (mRNA) levels were low in larvae, then increased significantly in mid-metamorphic transformers (stage 3); thereafter, levels subsided in final-stage transformers and metamorphosed juveniles. The abundance of PRL-L mRNA and immunoreactive protein increased in the pituitary of juveniles under hypoosmotic conditions, and treatment with PRL-L blocked seawater-associated inhibition of freshwater ion transporters. These findings clarify the origin and divergence of GH/PRL family genes in early vertebrates and reveal a function of PRL-L in osmoregulation of sea lamprey, comparable to a role of PRLs that is conserved in jawed vertebrates.


Assuntos
Hormônio do Crescimento Humano , Petromyzon , Animais , Hormônio do Crescimento/genética , Hormônio do Crescimento/metabolismo , Osmorregulação/genética , Petromyzon/genética , Petromyzon/metabolismo , Filogenia , Prolactina/genética , Prolactina/metabolismo , RNA Mensageiro/metabolismo , Vertebrados/genética
7.
Artigo em Inglês | MEDLINE | ID: mdl-35863659

RESUMO

The cost of osmoregulation in teleosts has been debated for decades, with estimates ranging from one to 30 % of routine metabolic rate. The variation in the energy budget appears to be greater for euryhaline fish due to their ability to withstand dynamic salinity levels. In this study, a time course of metabolic and physiological responses of the euryhaline fourspine stickleback (Apeltes quadracus) acclimated to freshwater (FW) and then exposed to seawater (SW) was examined. There was 18% mortality in the first 3 days following exposure to SW, with no mortalities in the FW control group. Gill Na+/K+-ATPase (NKA) activity, an index of osmoregulatory capacity, increased 2.6-fold in SW fish peaking on days 7 and 14. Gill citrate synthase activity, an index of aerobic capacity, was 50-62% greater in SW than FW fish and peaked on day 7. Tissue water content was significantly lower in the SW fish on day 1 only, returning to FW levels by day 3. Routine metabolic rate was decreased within 24 h of SW exposure and was maintained slightly (8-22%) but significantly lower in SW compared to FW water controls throughout the 2-week experiment. These results indicate that elevated salinity resulted in increased SW osmoregulatory and aerobic capacity in the gill, but with a reduced whole animal metabolic rate to this euryhaline species.


Assuntos
Smegmamorpha , ATPase Trocadora de Sódio-Potássio , Aclimatação/fisiologia , Animais , Brânquias/metabolismo , Salinidade , Água do Mar , Smegmamorpha/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Água/metabolismo , Equilíbrio Hidroeletrolítico/fisiologia
8.
Integr Comp Biol ; 62(2): 357-375, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35661215

RESUMO

Ecological transitions across salinity boundaries have led to some of the most important diversification events in the animal kingdom, especially among fishes. Adaptations accompanying such transitions include changes in morphology, diet, whole-organism performance, and osmoregulatory function, which may be particularly prominent since divergent salinity regimes make opposing demands on systems that maintain ion and water balance. Research in the last decade has focused on the genetic targets underlying such adaptations, most notably by comparing populations of species that are distributed across salinity boundaries. Here, we synthesize research on the targets of natural selection using whole-genome approaches, with a particular emphasis on the osmoregulatory system. Given the complex, integrated and polygenic nature of this system, we expected that signatures of natural selection would span numerous genes across functional levels of osmoregulation, especially salinity sensing, hormonal control, and cellular ion exchange mechanisms. We find support for this prediction: genes coding for V-type, Ca2+, and Na+/K+-ATPases, which are key cellular ion exchange enzymes, are especially common targets of selection in species from six orders of fishes. This indicates that while polygenic selection contributes to adaptation across salinity boundaries, changes in ATPase enzymes may be of particular importance in supporting such transitions.


Assuntos
Osmorregulação , Salinidade , Aclimatação/fisiologia , Animais , Peixes/fisiologia , Brânquias , Osmorregulação/genética , Seleção Genética , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo
9.
J Comp Physiol B ; 192(5): 577-592, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35715660

RESUMO

The life history of Atlantic salmon (Salmo salar) includes an initial freshwater phase (parr) that precedes a springtime migration to marine environments as smolts. The development of osmoregulatory systems that will ultimately support the survival of juveniles upon entry into marine habitats is a key aspect of smoltification. While the acquisition of seawater tolerance in all euryhaline species demands the concerted activity of specific ion pumps, transporters, and channels, the contributions of Na+/HCO3- cotransporter 1 (Nbce1) to salinity acclimation remain unresolved. Here, we investigated the branchial and intestinal expression of three Na+/HCO3- cotransporter 1 isoforms, denoted nbce1.1, -1.2a, and -1.2b. Given the proposed role of Nbce1 in supporting the absorption of environmental Na+ by ionocytes, we first hypothesized that expression of a branchial nbce1 transcript (nbce1.2a) would be attenuated in salmon undergoing smoltification and following seawater exposure. In two separate years, we observed spring increases in branchial Na+/K+-ATPase activity, Na+/K+/2Cl- cotransporter 1, and cystic fibrosis transmembrane regulator 1 expression characteristic of smoltification, whereas there were no attendant changes in nbce1.2a expression. Nonetheless, branchial nbce1.2a levels were reduced in parr and smolts within 2 days of seawater exposure. In the intestine, gene transcript abundance for nbce1.1 increased from spring to summer in the anterior intestine, but not in the posterior intestine or pyloric caeca, and nbce1.1 and -1.2b expression in the intestine showed season-dependent transcriptional regulation by seawater exposure. Collectively, our data indicate that tissue-specific modulation of all three nbce1 isoforms underlies adaptive responses to seawater.


Assuntos
Salmo salar , Simportadores , Aclimatação/fisiologia , Animais , Expressão Gênica , Brânquias/metabolismo , Isoformas de Proteínas/genética , Salmo salar/genética , Salmo salar/metabolismo , Água do Mar , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Simportadores/metabolismo
10.
Conserv Physiol ; 10(1): coac022, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35492413

RESUMO

For young fishes, growth of somatic tissues and energy reserves are critical steps for survival and progressing to subsequent life stages. When thermal regimes become supraoptimal, routine metabolic rates increase and leave less energy for young fish to maintain fitness-based activities and, in the case of anadromous fishes, less energy to prepare for emigration to coastal habitats. Thus, understanding how energy allocation strategies are affected by thermal regimes in young anadromous fish will help to inform climate-ready management of vulnerable species and their habitat. Blueback herring (Alosa aestivalis) are an anadromous fish species that remain at historically low population levels and are undergoing southern edge-range contraction, possibly due to climate change. We examined the effects of temperature (21°C, 24°C, 27°C, 30°C, 33°C) on survival, growth rate and energy reserves of juveniles collected from the mid-geographic range of the species. We identified a strong negative relationship between temperature and growth rate, resulting in smaller juveniles at high temperatures. We observed reduced survival at both 21°C and 33°C, increased fat and lean mass-at-length at high temperatures, but no difference in energy density. Juveniles were both smaller and contained greater scaled energy reserves at higher temperatures, indicating growth in length is more sensitive to temperature than growth of energy reserves. Currently, mid-geographic range juvenile blueback herring populations may be well suited for local thermal regimes, but continued warming could decrease survival and growth rates. Blueback herring populations may benefit from mitigation actions that maximize juvenile energy resources by increasing the availability of cold refugia and food-rich habitats, as well as reducing other stressors such as hypoxic zones.

11.
Front Endocrinol (Lausanne) ; 13: 859817, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35528002

RESUMO

Diadromous fishes undergo dramatic changes in osmoregulatory capacity in preparation for migration between freshwater and seawater. One of the primary hormones involved in coordinating these changes is the glucocorticoid hormone, cortisol. In Atlantic salmon (Salmo salar), cortisol levels increase during the spring smoltification period prior to seawater migration; however, the neuroendocrine factors responsible for regulating the hypothalamic-pituitary-interrenal (HPI) axis and plasma cortisol levels during smoltification remain unclear. Therefore, we evaluated seasonal changes in circulating levels of cortisol and its primary secretagogue-adrenocorticotropic hormone (ACTH)-as well as transcript abundance of the major regulators of HPI axis activity in the preoptic area, hypothalamus, and pituitary between migratory smolts and pre-migratory parr. Smolts exhibited higher plasma cortisol levels compared to parr across all timepoints but circulating ACTH levels were only elevated in May. Transcript abundance of preoptic area corticotropin-releasing factor b1 and arginine vasotocin were ~2-fold higher in smolts compared to parr in February through May. Smolts also had ~7-fold greater hypothalamic transcript abundance of urotensin 1 (uts-1a) compared to parr in May through July. When transferred to seawater during peak smolting in May smolts rapidly upregulated hypothalamic uts-1a transcript levels within 24 h, while parr only transiently upregulated uts-1a 96 h post-transfer. In situ hybridization revealed that uts-1a is highly abundant in the lateral tuberal nucleus (NLT) of the hypothalamus, consistent with a role in regulating the HPI axis. Overall, our results highlight the complex, multifactorial regulation of cortisol and provide novel insight into the neuroendocrine mechanisms controlling osmoregulation in teleosts.


Assuntos
Salmo salar , Aclimatação/fisiologia , Hormônio Adrenocorticotrópico , Animais , Hidrocortisona , Água do Mar
12.
J Exp Biol ; 224(22)2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34708857

RESUMO

The gill is one of the most important organs for growth and survival of fishes. Early life stages in coral reef fishes often exhibit extreme physiological and demographic characteristics that are linked to well-established respiratory and ionoregulatory processes. However, gill development and function in coral reef fishes is not well understood. Therefore, we investigated gill morphology, oxygen uptake and ionoregulatory systems throughout embryogenesis in two coral reef damselfishes, Acanthochromis polyacanthus and Amphiprion melanopus (Pomacentridae). In both species, we found key gill structures to develop rapidly early in the embryonic phase. Ionoregulatory cells appear on gill filaments 3-4 days post-fertilization and increase in density, whilst disappearing or shrinking in cutaneous locations. Primary respiratory tissue (lamellae) appears 5-7 days post-fertilization, coinciding with a peak in oxygen uptake rates of the developing embryos. Oxygen uptake was unaffected by phenylhydrazine across all ages (pre-hatching), indicating that haemoglobin is not yet required for oxygen uptake. This suggests that gills have limited contribution to respiratory functions during embryonic development, at least until hatching. Rapid gill development in damselfishes, when compared with that in most previously investigated fishes, may reflect preparations for a high-performance, challenging lifestyle on tropical reefs, but may also make reef fishes more vulnerable to anthropogenic stressors.


Assuntos
Recifes de Corais , Brânquias , Animais , Efeitos Antropogênicos , Desenvolvimento Embrionário , Peixes
13.
Fish Physiol Biochem ; 47(6): 1821-1836, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34546487

RESUMO

Temperature fluctuations and climate change impacts may substantially affect spawning success of fish, especially migratory species with a limited spawning window. Factors affecting American shad (Alosa sapidissima) spawning success and survival were investigated at different temperatures and periods (peak- and late-spawning periods) during the Connecticut River, USA, spawning migration in 2017. Wild caught American shad were exposed to constant temperatures regimes of 15, 18, 21, 24 and 27 °C for 2 weeks. During the peak-spawning period, an increase in temperature (15-24 °C) was shown to increase spawning success factors, including spawning probability, number of eggs, and fertilization success, but decreased egg size. Temperatures between 18 and 27 °C did not affect these factors during the late-spawning period. Glochidia infection by the alewife floater (Anodonta implicata) was much higher in the late-spawning period and significantly decreased the survival of American shad. Further research should investigate the parasite-host relationship between the alewife floater and American shad to determine annual variability of glochidia infections and how they affect American shad from physiological and passage perspectives. Higher temperatures were shown to increase spawning success of American shad during the peak-spawning period, but temperature had no effect during the late-spawning period. However, any effect during the late-spawning period may have been masked by a high level of glochidia infection.


Assuntos
Peixes , Reprodução , Rios , Temperatura , Animais , Anodonta/patogenicidade , Mudança Climática , Peixes/parasitologia , Peixes/fisiologia , Estados Unidos
14.
J Fish Biol ; 99(4): 1236-1246, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34101179

RESUMO

Growth rate and energy reserves are important determinants of fitness and are governed by endogenous and exogenous factors. Thus, examining the influence of individual and multiple stressors on growth and energy reserves can help estimate population health under current and future conditions. In young anadromous fishes, freshwater habitat quality determines physiological state and fitness of juveniles emigrating to marine habitats. In this study, the authors tested how temperature and food availability affect survival, growth and energy reserves in juvenile anadromous alewives (Alosa pseudoharengus), a forage fish distributed along the eastern North American continent. Field-collected juvenile anadromous A. pseudoharengus were exposed for 21 days to one of two temperatures (21°C and 25°C) and one of two levels of food rations (1% or 2% tank biomass daily) and compared for differences in final size, fat mass-at-length, lean mass-at-length and energy density. Increased temperature and reduced ration both led to lower growth rates, and the effect of reduced ration was greater at higher temperature. Fat mass-at-length decreased with dry mass, and energy density increased with total length, suggesting size-based endogenous influences on energy reserves. Lower ration also directly decreased fat mass-at-length, lean mass-at-length and energy density. Given the fitness implications of size and energy reserves, temperature and food availability should be considered important indicators of nursery habitat quality and incorporated in A. pseudoharengus life-history models to improve forecasting of population health under climate change.


Assuntos
Ecossistema , Peixes , Animais , Água Doce , Temperatura
15.
J Exp Biol ; 224(11)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34086050

RESUMO

Although corticosteroid-mediated hepatic gluconeogenic activity in response to stress has been extensively studied in fishes and other vertebrates, there is little information on the stress response in basal vertebrates. In sea lamprey (Petromyzon marinus), a representative member of the most basal extant vertebrate group Agnatha, 11-deoxycortisol and deoxycorticosterone are the major circulating corticosteroids. The present study examined changes in circulating glucose and 11-deoxycortisol concentrations in response to a physical stressor. Furthermore, the gluconeogenic actions of 11-deoxycortisol and deoxycorticosterone were examined. Within 6 h of exposure of larval and juvenile sea lamprey to an acute handling stress, plasma 11-deoxycortisol levels increased 15- and 6-fold, respectively, and plasma glucose increased 3- and 4-fold, respectively. Radiometric receptor binding studies revealed that a corticosteroid receptor (CR) is present in the liver at lower abundance than in other tissues (gill and anterior intestine) and that the binding affinity of the liver CR was similar for 11-deoxycortisol and deoxycorticosterone. Transcriptional tissue profiles indicate a wide distribution of cr transcription, kidney-specific transcription of steroidogenic acute regulatory protein (star) and liver-specific transcription of phosphoenolpyruvate carboxykinase (pepck). Ex vivo incubation of liver tissue with 11-deoxycortisol resulted in dose-dependent increases in pepck mRNA levels. Finally, intraperitoneal administration of 11-deoxycortisol and deoxycorticosterone demonstrated that only 11-deoxycortisol resulted in an increase in plasma glucose. Together, these results provide the first direct evidence for the gluconeogenic activity of 11-deoxycortisol in an agnathan, indicating that corticosteroid regulation of plasma glucose is a basal trait among vertebrates.


Assuntos
Cortodoxona , Petromyzon , Animais , Brânquias , Hormônios , Vertebrados
16.
Evol Appl ; 14(2): 446-461, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33664787

RESUMO

Most Atlantic salmon (Salmo salar L.) populations follow an anadromous life cycle, spending early life in freshwater, migrating to the sea for feeding, and returning to rivers to spawn. At the end of the last ice age ~10,000 years ago, several populations of Atlantic salmon became landlocked. Comparing their genomes to their anadromous counterparts can help identify genetic variation related to either freshwater residency or anadromy. The objective of this study was to identify consistently divergent loci between anadromous and landlocked Atlantic salmon strains throughout their geographical distribution, with the long-term aim of identifying traits relevant for salmon aquaculture, including fresh and seawater growth, omega-3 metabolism, smoltification, and disease resistance. We used a Pool-seq approach (n = 10-40 individuals per population) to sequence the genomes of twelve anadromous and six landlocked Atlantic salmon populations covering a large part of the Northern Hemisphere and conducted a genomewide association study to identify genomic regions having been under different selection pressure in landlocked and anadromous strains. A total of 28 genomic regions were identified and included cadm1 on Chr 13 and ppargc1a on Chr 18. Seven of the regions additionally displayed consistently reduced heterozygosity in fish obtained from landlocked populations, including the genes gpr132, cdca4, and sertad2 on Chr 15. We also found 16 regions, including igf1 on Chr 17, which consistently display reduced heterozygosity in the anadromous populations compared to the freshwater populations, indicating relaxed selection on traits associated with anadromy in landlocked salmon. In conclusion, we have identified 37 regions which may harbor genetic variation relevant for improving fish welfare and quality in the salmon farming industry and for understanding life-history traits in fish.

17.
Gen Comp Endocrinol ; 307: 113756, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33741310

RESUMO

Anadromous sea lamprey (Petromyzon marinus) larvae undergo a months-long true metamorphosis during which they develop seawater (SW) tolerance prior to downstream migration and SW entry. We have previously shown that intestinal Na+/K+-ATPase (NKA) activity increases during metamorphosis and is critical to the osmoregulatory function of the intestine in SW. The present study investigated the role of 11-deoxycortisol (S) in controlling NKA in the anterior (AI) and posterior (PI) intestine during sea lamprey metamorphosis. In a tissue profile, nka mRNA and protein were most abundant in the gill, kidney, and AI. During metamorphosis, AI nka mRNA increased 10-fold, whereas PI nka mRNA did not change. Specific corticosteroid receptors were found in the AI, which had a higher binding affinity for S compared to 11-deoxycorticosterone (DOC). In vivo administration of S in mid-metamorphic lamprey upregulated NKA activity 3-fold in the AI and PI, whereas administration of DOC did not affect intestinal NKA activity. During a 24 h SW challenge test, dehydration of white muscle moisture was rescued by prior treatment with S, which was associated with increased intestinal nka mRNA and NKA activity. These results indicate that intestinal osmoregulation in sea lamprey is a target for control by S during metamorphosis and the development of SW tolerance.


Assuntos
Petromyzon , Corticosteroides/metabolismo , Animais , Brânquias/metabolismo , Intestinos , Osmorregulação , Petromyzon/metabolismo , Água do Mar , ATPase Trocadora de Sódio-Potássio/metabolismo
18.
Mol Cell Endocrinol ; 519: 111056, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33069856

RESUMO

Seasonal timing is important for many critical life history events of vertebrates, and photoperiod is often used as a reliable seasonal cue. In mammals and birds, it has been established that a photoperiod-driven seasonal clock resides in the brain and pituitary, and is driven by increased levels of pituitary thyroid stimulating hormone (TSH) and brain type 2 iodothyronine deiodinase (DIO2), which leads to local increases in triiodothyronine (T3). In order to determine if a similar mechanism occurs in fish, we conducted photoperiod manipulations in anadromous (migratory) Atlantic salmon (Salmo salar) that use photoperiod to time the preparatory development of salinity tolerance which accompanies downstream migration in spring. Changing daylength from short days (light:dark (LD) 10:14) to long days (LD 16:8) for 20 days increased gill Na+/K+-ATPase (NKA) activity, gill NKAα1b abundance and plasma growth hormone (GH) levels that normally accompany increased salinity tolerance of salmon in spring. Long-day exposure resulted in five-fold increases in pituitary tshßb mRNA levels after 10 days and were sustained for at least 20 days. tshßb mRNA levels in the saccus vasculosus were low and not influenced by photoperiod. Increased daylength resulted in significant increases in dio2b mRNA levels in the hypothalamus and midbrain/optic tectum regions of the brain. The results are consistent with the presence of a photoperiod-driven seasonal clock in fish which involves pituitary TSH, brain DIO2 and the subsequent production of T3, supporting the hypothesis that this is a common feature of photoperiodic regulation of seasonality in vertebrates.


Assuntos
Encéfalo/enzimologia , Iodeto Peroxidase/metabolismo , Fotoperíodo , Hipófise/metabolismo , Salmo salar/fisiologia , Tireotropina/metabolismo , Animais , Brânquias/metabolismo , Modelos Biológicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Distribuição Tecidual
19.
Conserv Physiol ; 8(1): coaa074, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32963788

RESUMO

Manipulative experiments provide stronger evidence for identifying cause-and-effect relationships than correlative studies, but protocols for implementing temperature manipulations are lacking for large species in remote settings. We developed an experimental protocol for holding adult Chinook salmon (Oncorhynchus tshawytscha) and exposing them to elevated temperature treatments. The goal of the experimental protocol was to validate heat stress biomarkers by increasing river water temperature from ambient (~14°C) to a treatment temperature of 18°C or 21°C and then maintain the treatment temperature over 4 hours within a range of ±1.0°C. Our protocol resulted in a mean rate of temperature rise of 3.71°C h-1 (SD = 1.31) to treatment temperatures and mean holding temperatures of 18.0°C (SD = 0.2) and 21.0°C (SD = 0.2) in the low- and high-heat treatments, respectively. Our work demonstrated that manipulative experiments with large, mobile study species can be successfully developed in remote locations to examine thermal stress.

20.
J Exp Biol ; 223(Pt 18)2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32938687

RESUMO

Our current understanding of the hormonal control of ion regulation in aquatic vertebrates comes primarily from studies on teleost fishes, with relatively little information on more basal fishes. We investigated the role of cortisol in regulating seawater tolerance and its underlying mechanisms in an anadromous chondrostean, the Atlantic sturgeon (Acipenser oxyrinchus). Exposure of freshwater-reared Atlantic sturgeon to seawater (25 ppt) resulted in transient (1-3 day) increases in plasma chloride, cortisol and glucose levels and long-term (6-14 day) increases in the abundance of gill Na+/K+/2Cl- cotransporter (NKCC), which plays a critical role in salt secretion in teleosts. The abundance of gill V-type H+-ATPase, which is thought to play a role in ion uptake in fishes, decreased after exposure to seawater. Gill Na+/K+-ATPase activity did not increase in 25 ppt seawater, but did increase in fish gradually acclimated to 30 ppt. Treatment of Atlantic sturgeon in freshwater with exogenous cortisol resulted in dose-dependent increases in cortisol, glucose and gill NKCC and H+-ATPase abundance. Our results indicate that cortisol has an important role in regulating mechanisms for ion secretion and uptake in sturgeon and provide support for the hypothesis that control of osmoregulation and glucose by corticosteroids is a basal trait of jawed vertebrates.


Assuntos
Hidrocortisona , Osmorregulação , Animais , Peixes/metabolismo , Brânquias/metabolismo , Glucose , Água do Mar , ATPase Trocadora de Sódio-Potássio/metabolismo , Equilíbrio Hidroeletrolítico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...