Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
eNeuro ; 10(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36973009

RESUMO

Vagal sensory neurons (VSNs) located in the nodose ganglion provide information, such as stomach stretch or the presence of ingested nutrients, to the caudal medulla via specialized cell types expressing unique marker genes. Here, we leverage VSN marker genes identified in adult mice to determine when specialized vagal subtypes arise developmentally and the trophic factors that shape their growth. Experiments to screen for trophic factor sensitivity revealed that brain-derived neurotrophic factor (BDNF) and glial cell-derived neurotrophic factor (GDNF) robustly stimulate neurite outgrowth from VSNs in vitro Perinatally, BDNF was expressed by neurons of the nodose ganglion itself, while GDNF was expressed by intestinal smooth muscle cells. Thus, BDNF may support VSNs locally, whereas GDNF may act as a target-derived trophic factor supporting the growth of processes at distal innervation sites in the gut. Consistent with this, expression of the GDNF receptor was enriched in VSN cell types that project to the gastrointestinal tract. Last, the mapping of genetic markers in the nodose ganglion demonstrates that defined vagal cell types begin to emerge as early as embryonic day 13, even as VSNs continue to grow to reach gastrointestinal targets. Despite the early onset of expression for some marker genes, the expression patterns of many cell type markers appear immature in prenatal life and mature considerably by the end of the first postnatal week. Together, the data support location-specific roles for BDNF and GDNF in stimulating VSN growth, and a prolonged perinatal timeline for VSN maturation in male and female mice.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Camundongos , Masculino , Feminino , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Nervo Vago , Células Receptoras Sensoriais , Trato Gastrointestinal
2.
Sci Transl Med ; 12(542)2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32376766

RESUMO

Nerve-binding fluorophores with near-infrared (NIR; 650 to 900 nm) emission could reduce iatrogenic nerve injury rates by providing surgeons precise, real-time visualization of the peripheral nervous system. Unfortunately, current systemically administered nerve contrast agents predominantly emit at visible wavelengths and show nonspecific uptake in surrounding tissues such as adipose, muscle, and facia, thus limiting detection to surgically exposed surface-level nerves. Here, a focused NIR fluorophore library was synthesized and screened through multi-tiered optical and pharmacological assays to identify nerve-binding fluorophore candidates for clinical translation. NIR nerve probes enabled micrometer-scale nerve visualization at the greatest reported tissue depths (~2 to 3 mm), a feat unachievable with previous visibly emissive contrast agents. Laparoscopic fluorescent surgical navigation delineated deep lumbar and iliac nerves in swine, most of which were invisible in conventional white-light endoscopy. Critically, NIR oxazines generated contrast against all key surgical tissue classes (muscle, adipose, vasculature, and fascia) with nerve signal-to-background ratios ranging from ~2 (2- to 3-mm depth) to 25 (exposed nerve). Clinical translation of NIR nerve-specific agents will substantially reduce comorbidities associated with surgical nerve damage.


Assuntos
Tecido Nervoso , Espectroscopia de Luz Próxima ao Infravermelho , Animais , Corantes Fluorescentes , Imagem Óptica , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA