Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 226
Filtrar
1.
Exp Physiol ; 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38643471

RESUMO

Exercise-induced muscle adaptations vary based on exercise modality and intensity. We constructed a signalling network model from 87 published studies of human or rodent skeletal muscle cell responses to endurance or resistance exercise in vivo or simulated exercise in vitro. The network comprises 259 signalling interactions between 120 nodes, representing eight membrane receptors and eight canonical signalling pathways regulating 14 transcriptional regulators, 28 target genes and 12 exercise-induced phenotypes. Using this network, we formulated a logic-based ordinary differential equation model predicting time-dependent molecular and phenotypic alterations following acute endurance and resistance exercises. Compared with nine independent studies, the model accurately predicted 18/21 (85%) acute responses to resistance exercise and 12/16 (75%) acute responses to endurance exercise. Detailed sensitivity analysis of differential phenotypic responses to resistance and endurance training showed that, in the model, exercise regulates cell growth and protein synthesis primarily by signalling via mechanistic target of rapamycin, which is activated by Akt and inhibited in endurance exercise by AMP-activated protein kinase. Endurance exercise preferentially activates inflammation via reactive oxygen species and nuclear factor κB signalling. Furthermore, the expected preferential activation of mitochondrial biogenesis by endurance exercise was counterbalanced in the model by protein kinase C in response to resistance training. This model provides a new tool for investigating cross-talk between skeletal muscle signalling pathways activated by endurance and resistance exercise, and the mechanisms of interactions such as the interference effects of endurance training on resistance exercise outcomes.

2.
J Cardiovasc Electrophysiol ; 35(5): 916-928, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38439119

RESUMO

INTRODUCTION: Artificial intelligence (AI) ECG arrhythmia mapping provides arrhythmia source localization using 12-lead ECG data; whether this information impacts procedural efficiency is unknown. We performed a retrospective, case-control study to evaluate the hypothesis that AI ECG mapping may reduce time to ablation, procedural duration, and fluoroscopy. MATERIALS AND METHODS: Cases in which system output was used were retrospectively enrolled according to IRB-approved protocols at each site. Matched control cases were enrolled in reverse chronological order beginning on the last day for which the technology was unavailable. Controls were matched based upon physician, institution, arrhythmia, and a predetermined complexity rating. Procedural metrics, fluoroscopy data, and clinical outcomes were assessed from time-stamped medical records. RESULTS: The study group consisted of 28 patients (age 65 ± 11 years, 46% female, left atrial dimension 4.1 ± 0.9 cm, LVEF 50 ± 18%) and was similar to 28 controls. The most common arrhythmia types were atrial fibrillation (n = 10), premature ventricular complexes (n = 8), and ventricular tachycardia (n = 6). Use of the system was associated with a 19.0% reduction in time to ablation (133 ± 48 vs. 165 ± 49 min, p = 0.02), a 22.6% reduction in procedure duration (233 ± 51 vs. 301 ± 83 min, p < 0.001), and a 43.7% reduction in fluoroscopy (18.7 ± 13.3 vs. 33.2 ± 18.0 min, p < 0.001) versus controls. At 6 months follow-up, arrhythmia-free survival was 73.5% in the study group and 63.3% in the control group (p = 0.56). CONCLUSION: Use of forward-solution AI ECG mapping is associated with reductions in time to first ablation, procedure duration, and fluoroscopy without an adverse impact on procedure outcomes or complications.


Assuntos
Potenciais de Ação , Arritmias Cardíacas , Inteligência Artificial , Ablação por Cateter , Valor Preditivo dos Testes , Tempo para o Tratamento , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Arritmias Cardíacas/fisiopatologia , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/cirurgia , Ablação por Cateter/efeitos adversos , Eletrocardiografia , Técnicas Eletrofisiológicas Cardíacas , Fluoroscopia , Frequência Cardíaca , Duração da Cirurgia , Estudos Retrospectivos , Fatores de Tempo , Resultado do Tratamento , Estudos de Casos e Controles
3.
Med Image Anal ; 93: 103091, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38301348

RESUMO

Universal coordinate systems have been proposed to facilitate anatomic registration between three-dimensional images, data and models of the ventricles of the heart. However, current universal ventricular coordinate systems do not account for the outflow tracts and valve annuli where the anatomy is complex. Here we propose an extension to the 'Cobiveco' biventricular coordinate system that also accounts for the intervalvular bridges of the base and provides a tool for anatomically consistent registration between widely varying biventricular shapes. CobivecoX uses a novel algorithm to separate intervalvular bridges and assign new coordinates, including an inflow-outflow coordinate, to describe local positions in these regions uniquely and consistently. Anatomic consistency of registration was validated using curated three-dimensional biventricular shape models derived from cardiac MRI measurements in normal hearts and hearts from patients with congenital heart diseases. This new method allows the advantages of universal cardiac coordinates to be used for three-dimensional ventricular imaging data and models that include the left and right ventricular outflow tracts and valve annuli.


Assuntos
Catéteres , Cardiopatias Congênitas , Humanos , Cardiopatias Congênitas/diagnóstico por imagem , Coração , Ventrículos do Coração/diagnóstico por imagem , Algoritmos
4.
Am J Physiol Heart Circ Physiol ; 326(2): H370-H384, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38063811

RESUMO

To identify how cardiomyocyte mechanosensitive signaling pathways are regulated by anisotropic stretch, micropatterned mouse neonatal cardiomyocytes were stretched primarily longitudinally or transversely to the myofiber axis. Four hours of static, longitudinal stretch induced differential expression of 557 genes, compared with 30 induced by transverse stretch, measured using RNA-seq. A logic-based ordinary differential equation model of the cardiac myocyte mechanosignaling network, extended to include the transcriptional regulation and expression of 784 genes, correctly predicted measured expression changes due to anisotropic stretch with 69% accuracy. The model also predicted published transcriptional responses to mechanical load in vitro or in vivo with 63-91% accuracy. The observed differences between transverse and longitudinal stretch responses were not explained by differential activation of specific pathways but rather by an approximately twofold greater sensitivity to longitudinal stretch than transverse stretch. In vitro experiments confirmed model predictions that stretch-induced gene expression is more sensitive to angiotensin II and endothelin-1, via RhoA and MAP kinases, than to the three membrane ion channels upstream of calcium signaling in the network. Quantitative cardiomyocyte gene expression differs substantially with the axis of maximum principal stretch relative to the myofilament axis, but this difference is due primarily to differences in stretch sensitivity rather than to selective activation of mechanosignaling pathways.NEW & NOTEWORTHY Anisotropic stretch applied to micropatterned neonatal mouse ventricular myocytes induced markedly greater acute transcriptional responses when the major axis of stretch was parallel to the myofilament axis than when it was transverse. Analysis with a novel quantitative network model of mechanoregulated cardiomyocyte gene expression suggests that this difference is explained by higher cell sensitivity to longitudinal loading than transverse loading than by the activation of differential signaling pathways.


Assuntos
Miócitos Cardíacos , Transdução de Sinais , Animais , Camundongos , Miócitos Cardíacos/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Angiotensina II/farmacologia , Regulação da Expressão Gênica , Células Cultivadas , Estresse Mecânico
5.
J Appl Phys ; 134(7): 074905, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37601331

RESUMO

2'-Deoxy-ATP (dATP), a naturally occurring near analog of ATP, is a well-documented myosin activator that has been shown to increase contractile force, improve pump function, and enhance lusitropy in the heart. Calcium transients in cardiomyocytes with elevated levels of dATP show faster calcium decay compared with cardiomyocytes with basal levels of dATP, but the mechanisms behind this are unknown. Here, we design and utilize a multiscale computational modeling framework to test the hypothesis that dATP acts on the sarcoendoplasmic reticulum calcium-ATPase (SERCA) pump to accelerate calcium re-uptake into the sarcoplasmic reticulum during cardiac relaxation. Gaussian accelerated molecular dynamics simulations of human cardiac SERCA2A in the E1 apo, ATP-bound and dATP-bound states showed that dATP forms more stable contacts in the nucleotide binding pocket of SERCA and leads to increased closure of cytosolic domains. These structural changes ultimately lead to changes in calcium binding, which we assessed using Brownian dynamics simulations. We found that dATP increases calcium association rate constants to SERCA and that dATP binds to apo SERCA more rapidly than ATP. Using a compartmental ordinary differential equation model of human cardiomyocyte excitation-contraction coupling, we found that these increased association rate constants contributed to the accelerated rates of calcium transient decay observed experimentally. This study provides clear mechanistic evidence of enhancements in cardiac SERCA2A pump function due to interactions with dATP.

6.
Sci Adv ; 9(17): eadf9063, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37126544

RESUMO

Aberrant AKT activation occurs in a number of cancers, metabolic syndrome, and immune disorders, making it an important target for the treatment of many diseases. To monitor spatial and temporal AKT activity in a live setting, we generated an Akt-FRET biosensor mouse that allows longitudinal assessment of AKT activity using intravital imaging in conjunction with image stabilization and optical window technology. We demonstrate the sensitivity of the Akt-FRET biosensor mouse using various cancer models and verify its suitability to monitor response to drug targeting in spheroid and organotypic models. We also show that the dynamics of AKT activation can be monitored in real time in diverse tissues, including in individual islets of the pancreas, in the brown and white adipose tissue, and in the skeletal muscle. Thus, the Akt-FRET biosensor mouse provides an important tool to study AKT dynamics in live tissue contexts and has broad preclinical applications.


Assuntos
Técnicas Biossensoriais , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Técnicas Biossensoriais/métodos
7.
J Gen Physiol ; 155(6)2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37102985
8.
Front Physiol ; 14: 1126111, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36960155

RESUMO

Mechanosignaling describes processes by which biomechanical stimuli are transduced into cellular responses. External biophysical forces can be transmitted via structural protein networks that span from the cellular membrane to the cytoskeleton and the nucleus, where they can regulate gene expression through a series of biomechanical and/or biochemical mechanosensitive mechanisms, including chromatin remodeling, translocation of transcriptional regulators, and epigenetic factors. Striated muscle cells, including cardiac and skeletal muscle myocytes, utilize these nuclear mechanosignaling mechanisms to respond to changes in their intracellular and extracellular mechanical environment and mediate gene expression and cell remodeling. In this brief review, we highlight and discuss recent experimental work focused on the pathway of biomechanical stimulus propagation at the nucleus-cytoskeleton interface of striated muscles, and the mechanisms by which these pathways regulate gene regulation, muscle structure, and function. Furthermore, we discuss nuclear protein mutations that affect mechanosignaling function in human and animal models of cardiomyopathy. Furthermore, current open questions and future challenges in investigating striated muscle nuclear mechanosignaling are further discussed.

9.
Sci Rep ; 13(1): 2335, 2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36759522

RESUMO

Current indications for pulmonary valve replacement (PVR) in repaired tetralogy of Fallot (rTOF) rely on cardiovascular magnetic resonance (CMR) image-based indices but are inconsistently applied, lead to mixed outcomes, and remain debated. This study aimed to test the hypothesis that specific markers of biventricular shape may discriminate differences between rTOF patients who did and did not require subsequent PVR better than standard imaging indices. In this cross-sectional retrospective study, biventricular shape models were customized to CMR images from 84 rTOF patients. A statistical atlas of end-diastolic shape was constructed using principal component analysis. Multivariate regression was used to quantify shape mode and imaging index associations with subsequent intervention status (PVR, n = 48 vs. No-PVR, n = 36), while accounting for confounders. Clustering analysis was used to test the ability of the most significant shape modes and imaging indices to discriminate PVR status as evaluated by a Matthews correlation coefficient (MCC). Geometric strain analysis was also conducted to assess shape mode associations with systolic function. PVR status correlated significantly with shape modes associated with right ventricular (RV) apical dilation and left ventricular (LV) dilation (p < 0.01), RV basal bulging and LV conicity (p < 0.05), and pulmonary valve dilation (p < 0.01). PVR status also correlated significantly with RV ejection fraction (p < 0.05) and correlated marginally with LV end-systolic volume index (p < 0.07). Shape modes discriminated subsequent PVR better than standard imaging indices (MCC = 0.49 and MCC = 0.28, respectively) and were significantly associated with RV and LV radial systolic strain. Biventricular shape modes discriminated differences between patients who did and did not require subsequent PVR better than standard imaging indices in current use. These regional features of cardiac morphology may provide insight into adaptive vs. maladaptive types of structural remodeling and point toward an improved quantitative, patient-specific assessment tool for clinical use.


Assuntos
Implante de Prótese de Valva Cardíaca , Insuficiência da Valva Pulmonar , Valva Pulmonar , Tetralogia de Fallot , Humanos , Valva Pulmonar/diagnóstico por imagem , Valva Pulmonar/cirurgia , Tetralogia de Fallot/diagnóstico por imagem , Tetralogia de Fallot/cirurgia , Tetralogia de Fallot/complicações , Insuficiência da Valva Pulmonar/diagnóstico por imagem , Insuficiência da Valva Pulmonar/cirurgia , Estudos Retrospectivos , Estudos Transversais , Imageamento por Ressonância Magnética , Resultado do Tratamento
10.
J Cardiovasc Magn Reson ; 25(1): 15, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36849960

RESUMO

BACKGROUND: Cardiac shape modeling is a useful computational tool that has provided quantitative insights into the mechanisms underlying dysfunction in heart disease. The manual input and time required to make cardiac shape models, however, limits their clinical utility. Here we present an end-to-end pipeline that uses deep learning for automated view classification, slice selection, phase selection, anatomical landmark localization, and myocardial image segmentation for the automated generation of three-dimensional, biventricular shape models. With this approach, we aim to make cardiac shape modeling a more robust and broadly applicable tool that has processing times consistent with clinical workflows. METHODS: Cardiovascular magnetic resonance (CMR) images from a cohort of 123 patients with repaired tetralogy of Fallot (rTOF) from two internal sites were used to train and validate each step in the automated pipeline. The complete automated pipeline was tested using CMR images from a cohort of 12 rTOF patients from an internal site and 18 rTOF patients from an external site. Manually and automatically generated shape models from the test set were compared using Euclidean projection distances, global ventricular measurements, and atlas-based shape mode scores. RESULTS: The mean absolute error (MAE) between manually and automatically generated shape models in the test set was similar to the voxel resolution of the original CMR images for end-diastolic models (MAE = 1.9 ± 0.5 mm) and end-systolic models (MAE = 2.1 ± 0.7 mm). Global ventricular measurements computed from automated models were in good agreement with those computed from manual models. The average mean absolute difference in shape mode Z-score between manually and automatically generated models was 0.5 standard deviations for the first 20 modes of a reference statistical shape atlas. CONCLUSIONS: Using deep learning, accurate three-dimensional, biventricular shape models can be reliably created. This fully automated end-to-end approach dramatically reduces the manual input required to create shape models, thereby enabling the rapid analysis of large-scale datasets and the potential to deploy statistical atlas-based analyses in point-of-care clinical settings. Training data and networks are available from cardiacatlas.org.


Assuntos
Aprendizado Profundo , Tetralogia de Fallot , Humanos , Tetralogia de Fallot/diagnóstico por imagem , Tetralogia de Fallot/cirurgia , Valor Preditivo dos Testes , Ventrículos do Coração , Diástole
11.
J Mol Cell Cardiol ; 174: 1-14, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36370475

RESUMO

Familial cardiomyopathy is a precursor of heart failure and sudden cardiac death. Over the past several decades, researchers have discovered numerous gene mutations primarily in sarcomeric and cytoskeletal proteins causing two different disease phenotypes: hypertrophic (HCM) and dilated (DCM) cardiomyopathies. However, molecular mechanisms linking genotype to phenotype remain unclear. Here, we employ a systems approach by integrating experimental findings from preclinical studies (e.g., murine data) into a cohesive signaling network to scrutinize genotype to phenotype mechanisms. We developed an HCM/DCM signaling network model utilizing a logic-based differential equations approach and evaluated model performance in predicting experimental data from four contexts (HCM, DCM, pressure overload, and volume overload). The model has an overall prediction accuracy of 83.8%, with higher accuracy in the HCM context (90%) than DCM (75%). Global sensitivity analysis identifies key signaling reactions, with calcium-mediated myofilament force development and calcium-calmodulin kinase signaling ranking the highest. A structural revision analysis indicates potential missing interactions that primarily control calcium regulatory proteins, increasing model prediction accuracy. Combination pharmacotherapy analysis suggests that downregulation of signaling components such as calcium, titin and its associated proteins, growth factor receptors, ERK1/2, and PI3K-AKT could inhibit myocyte growth in HCM. In experiments with patient-specific iPSC-derived cardiomyocytes (MLP-W4R;MYH7-R723C iPSC-CMs), combined inhibition of ERK1/2 and PI3K-AKT rescued the HCM phenotype, as predicted by the model. In DCM, PI3K-AKT-NFAT downregulation combined with upregulation of Ras/ERK1/2 or titin or Gq protein could ameliorate cardiomyocyte morphology. The model results suggest that HCM mutations that increase active force through elevated calcium sensitivity could increase ERK activity and decrease eccentricity through parallel growth factors, Gq-mediated, and titin pathways. Moreover, the model simulated the influence of existing medications on cardiac growth in HCM and DCM contexts. This HCM/DCM signaling model demonstrates utility in investigating genotype to phenotype mechanisms in familial cardiomyopathy.


Assuntos
Cardiomiopatias , Cardiomiopatia Hipertrófica , Insuficiência Cardíaca , Animais , Camundongos , Conectina/genética , Conectina/metabolismo , Miócitos Cardíacos/metabolismo , Cardiomiopatia Hipertrófica/genética , Cálcio/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Cardiomiopatias/metabolismo , Insuficiência Cardíaca/metabolismo
12.
Circ Arrhythm Electrophysiol ; 15(9): e010857, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36069189

RESUMO

BACKGROUND: The accuracy of noninvasive arrhythmia source localization using a forward-solution computational mapping system has not yet been evaluated in blinded, multicenter analysis. This study tested the hypothesis that a computational mapping system incorporating a comprehensive arrhythmia simulation library would provide accurate localization of the site-of-origin for atrial and ventricular arrhythmias and pacing using 12-lead ECG data when compared with the gold standard of invasive electrophysiology study and ablation. METHODS: The VMAP study (Vectorcardiographic Mapping of Arrhythmogenic Probability) was a blinded, multicenter evaluation with final data analysis performed by an independent core laboratory. Eligible episodes included atrial and ventricular: tachycardia, fibrillation, pacing, premature atrial and ventricular complexes, and orthodromic atrioventricular reentrant tachycardia. Mapping system results were compared with the gold standard site of successful ablation or pacing during electrophysiology study and ablation. Mapping time was assessed from time-stamped logs. Prespecified performance goals were used for statistical comparisons. RESULTS: A total of 255 episodes from 225 patients were enrolled from 4 centers. Regional accuracy for ventricular tachycardia and premature ventricular complexes in patients without significant structural heart disease (n=75, primary end point) was 98.7% (95% CI, 96.0%-100%; P<0.001 to reject predefined H0 <0.80). Regional accuracy for all episodes (secondary end point 1) was 96.9% (95% CI, 94.7%-99.0%; P<0.001 to reject predefined H0 <0.75). Accuracy for the exact or neighboring segment for all episodes (secondary end point 2) was 97.3% (95% CI, 95.2%-99.3%; P<0.001 to reject predefined H0 <0.70). Median spatial accuracy was 15 mm (n=255, interquartile range, 7-25 mm). The mapping process was completed in a median of 0.8 minutes (interquartile range, 0.4-1.4 minutes). CONCLUSIONS: Computational ECG mapping using a forward-solution approach exceeded prespecified accuracy goals for arrhythmia and pacing localization. Spatial accuracy analysis demonstrated clinically actionable results. This rapid, noninvasive mapping technology may facilitate catheter-based and noninvasive targeted arrhythmia therapies. REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifier: NCT04559061.


Assuntos
Ablação por Cateter , Taquicardia Supraventricular , Taquicardia Ventricular , Complexos Ventriculares Prematuros , Ablação por Cateter/métodos , Eletrocardiografia/métodos , Humanos , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/cirurgia
13.
Infect Dis Ther ; 11(6): 2099-2109, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36152227

RESUMO

INTRODUCTION: Coronavirus disease 2019 (COVID-19) and influenza share similar symptoms, which hampers diagnosis. Given that they require different containment and treatment strategies, fast and accurate distinction between the two infections is needed. This study evaluates the sensitivity and specificity of the microfluidic antigen LumiraDx SARS-CoV-2 and Flu A/B Test for simultaneous detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A/B from a single nasal swab. METHODS: Nasal samples were collected from patients as part of the ASPIRE (NCT04557046) and INSPIRE (NCT04288921) studies at point-of-care testing sites in the USA. ASPIRE study participants were included after developing COVID-19 symptoms in the last 14 days or following a positive SARS-CoV-2 test in the last 48 h. INSPIRE study participants were included after developing influenza symptoms in the last 4 days. Samples were extracted into proprietary buffer and analysed using the LumiraDx SARS-CoV-2 and Flu A/B Test. A reference sample was taken from each subject, placed into universal transport medium and tested using reference SARS-CoV-2 and influenza reverse transcription polymerase chain reaction (RT-PCR) tests. The test and reference samples were compared using the positive percent agreement (PPA) and negative percent agreement (NPA), together with their 95% confidence intervals (CIs). RESULTS: Analysis of the data from the ASPIRE (N = 124) and INSPIRE (N = 159) studies revealed high levels of agreement between the LumiraDx SARS-CoV-2 and Flu A/B Test and the reference tests in detecting SARS-CoV-2 (PPA = 95.5% [95% CI 84.9%, 98.7%]; NPA = 96.0% [95% CI 90.9%, 98.3%]), influenza A (PPA = 83.3% [95% CI 66.4%, 92.7%]; NPA = 97.7% [95% CI 93.4%, 99.2%]) and influenza B (PPA = 80.0% [95% CI 62.7%, 90.5%]; NPA = 95.3% [95% CI 90.2%, 97.9%]). CONCLUSIONS: The LumiraDx SARS-CoV-2 and Flu A/B Test shows a high agreement with the reference RT-PCR tests while simultaneously detecting and differentiating between SARS-CoV-2 and influenza A/B. TRIAL REGISTRATION: ClinicalTrials.gov identifiers NCT04557046 and NCT04288921.

14.
J Cardiovasc Magn Reson ; 24(1): 46, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35922806

RESUMO

BACKGROUND: Maladaptive remodelling mechanisms occur in patients with repaired tetralogy of Fallot (rToF) resulting in a cycle of metabolic and structural changes. Biventricular shape analysis may indicate mechanisms associated with adverse events independent of pulmonary regurgitant volume index (PRVI). We aimed to determine novel remodelling patterns associated with adverse events in patients with rToF using shape and function analysis. METHODS: Biventricular shape and function were studied in 192 patients with rToF (median time from TOF repair to baseline evaluation 13.5 years). Linear discriminant analysis (LDA) and principal component analysis (PCA) were used to identify shape differences between patients with and without adverse events. Adverse events included death, arrhythmias, and cardiac arrest with median follow-up of 10 years. RESULTS: LDA and PCA showed that shape characteristics pertaining to adverse events included a more circular left ventricle (LV) (decreased eccentricity), dilated (increased sphericity) LV base, increased right ventricular (RV) apical sphericity, and decreased RV basal sphericity. Multivariate LDA showed that the optimal discriminative model included only RV apical ejection fraction and one PCA mode associated with a more circular and dilated LV base (AUC = 0.77). PRVI did not add value, and shape changes associated with increased PRVI were not predictive of adverse outcomes. CONCLUSION: Pathological remodelling patterns in patients with rToF are significantly associated with adverse events, independent of PRVI. Mechanisms related to incident events include LV basal dilation with a reduced RV apical ejection fraction.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Insuficiência da Valva Pulmonar , Tetralogia de Fallot , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Humanos , Valor Preditivo dos Testes , Insuficiência da Valva Pulmonar/diagnóstico por imagem , Insuficiência da Valva Pulmonar/etiologia , Insuficiência da Valva Pulmonar/cirurgia , Tetralogia de Fallot/complicações , Tetralogia de Fallot/diagnóstico por imagem , Tetralogia de Fallot/cirurgia , Função Ventricular Direita
15.
Int J Mol Sci ; 23(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35055055

RESUMO

Dilated cardiomyopathy (DCM) is a life-threatening form of heart disease that is typically characterized by progressive thinning of the ventricular walls, chamber dilation, and systolic dysfunction. Multiple mutations in the gene encoding filamin C (FLNC), an actin-binding cytoskeletal protein in cardiomyocytes, have been found in patients with DCM. However, the mechanisms that lead to contractile impairment and DCM in patients with FLNC variants are poorly understood. To determine how FLNC regulates systolic force transmission and DCM remodeling, we used an inducible, cardiac-specific FLNC-knockout (icKO) model to produce a rapid onset of DCM in adult mice. Loss of FLNC reduced systolic force development in single cardiomyocytes and isolated papillary muscles but did not affect twitch kinetics or calcium transients. Electron and immunofluorescence microscopy showed significant defects in Z-disk alignment in icKO mice and altered myofilament lattice geometry. Moreover, a loss of FLNC induces a softening myocyte cortex and structural adaptations at the subcellular level that contribute to disrupted longitudinal force production during contraction. Spatially explicit computational models showed that these structural defects could be explained by a loss of inter-myofibril elastic coupling at the Z-disk. Our work identifies FLNC as a key regulator of the multiscale ultrastructure of cardiomyocytes and therefore plays an important role in maintaining systolic mechanotransmission pathways, the dysfunction of which may be key in driving progressive DCM.


Assuntos
Biomarcadores , Cardiomiopatia Dilatada/etiologia , Cardiomiopatia Dilatada/metabolismo , Filaminas/deficiência , Predisposição Genética para Doença , Miócitos Cardíacos/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Cardiomiopatia Dilatada/diagnóstico , Costâmeros/genética , Costâmeros/metabolismo , Modelos Animais de Doenças , Feminino , Filaminas/metabolismo , Expressão Gênica , Estudos de Associação Genética , Masculino , Camundongos , Camundongos Knockout , Modelos Biológicos , Mutação , Contração Miocárdica/genética
16.
J Struct Biol ; 214(1): 107806, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34742833

RESUMO

Mitochondrial morphological defects are a common feature of diseased cardiac myocytes. However, quantitative assessment of mitochondrial morphology is limited by the time-consuming manual segmentation of electron micrograph (EM) images. To advance understanding of the relation between morphological defects and dysfunction, an efficient morphological reconstruction method is desired to enable isolation and reconstruction of mitochondria from EM images. We propose a new method for isolating and reconstructing single mitochondria from serial block-face scanning EM (SBEM) images. CDeep3M, a cloud-based deep learning network for EM images, was used to segment mitochondrial interior volumes and boundaries. Post-processing was performed using both the predicted interior volume and exterior boundary to isolate and reconstruct individual mitochondria. Series of SBEM images from two separate cardiac myocytes were processed. The highest F1-score was 95% using 50 training datasets, greater than that for previously reported automated methods and comparable to manual segmentations. Accuracy of separation of individual mitochondria was 80% on a pixel basis. A total of 2315 mitochondria in the two series of SBEM images were evaluated with a mean volume of 0.78 µm3. The volume distribution was very broad and skewed; the most frequent mitochondria were 0.04-0.06 µm3, but mitochondria larger than 2.0 µm3 accounted for more than 10% of the total number. The average short-axis length was 0.47 µm. Primarily longitudinal mitochondria (0-30 degrees) were dominant (54%). This new automated segmentation and separation method can help quantitate mitochondrial morphology and improve understanding of myocyte structure-function relationships.


Assuntos
Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Mitocôndrias , Miócitos Cardíacos
17.
Nat Nanotechnol ; 17(3): 292-300, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34949774

RESUMO

Electrical impulse generation and its conduction within cells or cellular networks are the cornerstone of electrophysiology. However, the advancement of the field is limited by sensing accuracy and the scalability of current recording technologies. Here we describe a scalable platform that enables accurate recording of transmembrane potentials in electrogenic cells. The platform employs a three-dimensional high-performance field-effect transistor array for minimally invasive cellular interfacing that produces faithful recordings, as validated by the gold standard patch clamp. Leveraging the high spatial and temporal resolutions of the field-effect transistors, we measured the intracellular signal conduction velocity of a cardiomyocyte to be 0.182 m s-1, which is about five times the intercellular velocity. We also demonstrate intracellular recordings in cardiac muscle tissue constructs and reveal the signal conduction paths. This platform could provide new capabilities in probing the electrical behaviours of single cells and cellular networks, which carries broad implications for understanding cellular physiology, pathology and cell-cell interactions.


Assuntos
Fenômenos Eletrofisiológicos , Miócitos Cardíacos , Potenciais de Ação , Comunicação Celular
18.
Stat Atlases Comput Models Heart ; 13593: 112-122, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37251544

RESUMO

The current study proposes an efficient strategy for exploiting the statistical power of cardiac atlases to investigate whether clinically significant variations in ventricular shape are sufficient to explain corresponding differences in ventricular wall motion directly, or if they are indirect markers of altered myocardial mechanical properties. This study was conducted in a cohort of patients with repaired tetralogy of Fallot (rTOF) that face long-term right ventricular (RV) and/or left ventricular (LV) dysfunction as a consequence of adverse remodeling. Features of biventricular end-diastolic (ED) shape associated with RV apical dilation, LV dilation, RV basal bulging, and LV conicity correlated with components of systolic wall motion (SWM) that contribute most to differences in global systolic function. A finite element analysis of systolic biventricular mechanics was employed to assess the effect of perturbations in these ED shape modes on corresponding components of SWM. Perturbations to ED shape modes and myocardial contractility explained observed variation in SWM to varying degrees. In some cases, shape markers were partial determinants of systolic function and, in other cases, they were indirect markers for altered myocardial mechanical properties. Patients with rTOF may benefit from an atlas-based analysis of biventricular mechanics to improve prognosis and gain mechanistic insight into underlying myocardial pathophysiology.

19.
J Cardiovasc Magn Reson ; 23(1): 105, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34615541

RESUMO

BACKGROUND: Relationships between right ventricular (RV) and left ventricular (LV) shape and function may be useful in determining optimal timing for pulmonary valve replacement in patients with repaired tetralogy of Fallot (rTOF). However, these are multivariate and difficult to quantify. We aimed to quantify variations in biventricular shape associated with pulmonary regurgitant volume (PRV) in rTOF using a biventricular atlas. METHODS: In this cross-sectional retrospective study, a biventricular shape model was customized to cardiovascular magnetic resonance (CMR) images from 88 rTOF patients (median age 16, inter-quartile range 11.8-24.3 years). Morphometric scores quantifying biventricular shape at end-diastole and end-systole were computed using principal component analysis. Multivariate linear regression was used to quantify biventricular shape associations with PRV, corrected for age, sex, height, and weight. Regional associations were confirmed by univariate correlations with distances and angles computed from the models, as well as global systolic strains computed from changes in arc length from end-diastole to end-systole. RESULTS: PRV was significantly associated with 5 biventricular morphometric scores, independent of covariates, and accounted for 12.3% of total shape variation (p < 0.05). Increasing PRV was associated with RV dilation and basal bulging, in conjunction with decreased LV septal-lateral dimension (LV flattening) and systolic septal motion towards the RV (all p < 0.05). Increased global RV radial, longitudinal, circumferential and LV radial systolic strains were significantly associated with increased PRV (all p < 0.05). CONCLUSION: A biventricular atlas of rTOF patients quantified multivariate relationships between left-right ventricular morphometry and wall motion with pulmonary regurgitation. Regional RV dilation, LV reduction, LV septal-lateral flattening and increased RV strain were all associated with increased pulmonary regurgitant volume. Morphometric scores provide simple metrics linking mechanisms for structural and functional alteration with important clinical indices.


Assuntos
Insuficiência da Valva Pulmonar , Tetralogia de Fallot , Adolescente , Adulto , Criança , Estudos Transversais , Humanos , Valor Preditivo dos Testes , Insuficiência da Valva Pulmonar/diagnóstico por imagem , Insuficiência da Valva Pulmonar/etiologia , Estudos Retrospectivos , Tetralogia de Fallot/diagnóstico por imagem , Tetralogia de Fallot/cirurgia , Função Ventricular Direita , Adulto Jovem
20.
J Comput Sci ; 522021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34691293

RESUMO

Increased availability and access to medical image data has enabled more quantitative approaches to clinical diagnosis, prognosis, and treatment planning for congenital heart disease. Here we present an overview of long-term clinical management of tetralogy of Fallot (TOF) and its intersection with novel computational and data science approaches to discovering biomarkers of functional and prognostic importance. Efforts in translational medicine that seek to address the clinical challenges associated with cardiovascular diseases using personalized and precision-based approaches are then discussed. The considerations and challenges of translational cardiovascular medicine are reviewed, and examples of digital platforms with collaborative, cloud-based, and scalable design are provided.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...