Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
MethodsX ; 12: 102618, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38425496

RESUMO

In this paper, we present the Home Electricity Data Generator (HEDGE), an open-access tool for the random generation of realistic residential energy data. HEDGE generates realistic daily profiles of residential PV generation, household electric loads, and electric vehicle consumption and at-home availability, based on real-life UK datasets. The lack of usable data is a major hurdle for research on residential distributed energy resources characterisation and coordination, especially when using data-driven methods such as machine learning-based forecasting and reinforcement learning-based control. We fill this gap with the open-access HEDGE tool which generates data sequences of energy data for several days in a way that is consistent for single homes, both in terms of profile magnitude and behavioural clusters.•From raw datasets, pre-processing steps are conducted, including filling in incomplete data sequences, and clustering profiles into behaviour clusters. Transitions between successive behaviour clusters and profiles magnitudes are characterised.•Generative adversarial networks (GANs) are then trained to generate realistic synthetic data representative of each behaviour groups consistent with real-life behavioural and physical patterns.•Using the characterisation of behaviour cluster and profile magnitude transitions, and the GAN-based profiles generator, a Markov chain mechanism can generate realistic energy data for successive days.

3.
Data Brief ; 45: 108691, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36426028

RESUMO

The 2019 Energy Act requires each of Kenya's 47 counties to independently develop energy plans. As county energy planning accelerates, it is important to understand the availability and readiness of data required to facilitate it. This article identifies, evaluates, and pre-processes openly available data to facilitate county-level energy planning using the Open Source Spatial Electrification Tool (OnSSET) in Kitui County, Kenya. In this way, it provides a ready-to-use starter kit of data inputs for county-level OnSSET analysis, and guidance to replicate this work in other counties. We classify the readiness level of each data type for county energy planning on a traffic light scale (i.e. green, amber, red) based on availability, accessibility, recency, accuracy, spatial resolution, and format (i.e. whether processing is required before use). Of the 25 core data inputs for OnSSET at the county-level, we find that 14 have a green, six have an amber, and five have a red readiness-level. Data processing requirements are documented, and the processed data for Kitui county are made available as a ready-to-use set of input parameters for OnSSET. While this data was collected for Kitui, the data sources and processing steps are largely applicable in other counties.

4.
Data Brief ; 42: 108262, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35647244

RESUMO

This article presents a geolocated dataset of rural home annotations on very high resolution satellite imagery from Uganda, Kenya, and Sierra Leone. This dataset was produced through a citizen science project called "Power to the People", which mapped rural homes for electrical infrastructure planning and computer-vision-based mapping. Additional details on this work are presented in "Power to the People: Applying citizen science to home-level mapping for rural energy access" [1]. 578,010 home annotations were made on approximately 1,267 km2 of imagery over 179 days by over 6,000 volunteers. The bounding-box annotations produced in this work have been anonymized and georeferenced. These raw annotations were found to have a precision of 49% and recall of 93% compared to a researcher-generated set of gold standard annotations. Data on roof colour and shape were also collected and are provided. Metadata about the sensors used to capture the original images and the annotation process are also attached to data records. While this dataset was collected for electrical infrastructure planning research, it can be useful in diverse sectors, including humanitarian assistance and public health.

5.
Sci Total Environ ; 830: 154461, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35278559

RESUMO

The increase in sediment and nutrient loads entering the coastal waters of the Great Barrier Reef (GBR) and the associated degradation of water quality represents a major threat to coral reefs. Although the strengthening of preventative management strategies remains a priority, there is a general lack of terrestrial runoff baseline information with respect to the spatial and temporal severity of disturbances associated with ongoing European-style land use practices. Here we use new and existing high-resolution coral Ba/Ca and luminescence records from the central Cairns region to the southern GBR shelf to reconstruct sediment fluxes discharged into the GBR from before European settlement in the 1860s to the present-day. Since the commencement of European settlement in the 1860s we document a tripling of flood-plume suspended sediment loads delivered by the Burdekin River to the GBR lagoon relative to 'natural' pre-European baseline levels. We show that this is indicative of a much more extreme degradation of the river catchments than hitherto appreciated with intensified discharge events particularly from the central and southern catchments carrying higher sediment loads. More-over from the 1930s onwards the Burdekin River, the largest source of both sediment and freshwater to the GBR, has also exhibited a progressive northwards expansion of its flood plume. This, together with increased variability of freshwater inputs indicated by coral luminescence records, now shows that the inner GBR not only continues to be impacted by increasing sediment/nutrient loads but is also subject to higher intensity river discharge events due to the loss of ground cover causing increased overland runoff and erosion.


Assuntos
Antozoários , Rios , Animais , Recifes de Corais , Água Doce
6.
Glob Chang Biol ; 28(8): 2751-2763, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35119159

RESUMO

Coral reefs are iconic ecosystems with immense ecological, economic and cultural value, but globally their carbonate-based skeletal construction is threatened by ocean acidification (OA). Identifying coral species that have specialised mechanisms to maintain high rates of calcification in the face of declining seawater pH is of paramount importance in predicting future species composition, and growth of coral reefs. Here, we studied multiple coral species from two distinct volcanic CO2 seeps in Papua New Guinea to assess their capacity to control their calcifying fluid (CF) chemistry. Several coral species living under conditions of low mean seawater pH, but with either low or high variability in seawater pH, were examined and compared with those living in 'normal' (non-seep) ambient seawater pH. We show that when mean seawater pH is low but highly variable, corals have a greater ability to maintain constant pHcf in their CF, but this characteristic was not linked with changes in abundance. Within less variable low pH seawater, corals with limited reductions in pHcf at the seep sites compared with controls tended to be more abundant at the seep site than at the control site. However, this finding was strongly influenced by a single species (Montipora foliosa), which was able to maintain complete pHcf homeostasis. Overall, although our findings indicate that there might be an association between ecological success and greater pHcf homeostasis, further research with additional species and at more sites with differing seawater pH regimes is required to solidify inferences regarding coral ecological success under future OA.


Assuntos
Antozoários , Animais , Antozoários/fisiologia , Calcificação Fisiológica/fisiologia , Dióxido de Carbono/química , Recifes de Corais , Ecossistema , Concentração de Íons de Hidrogênio , Oceanos e Mares , Água do Mar/química
7.
Environ Sci Pollut Res Int ; 29(3): 3826-3839, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34402010

RESUMO

The accelerated release of heavy metals into the coastal environments due to increasing anthropogenic activities poses a severe threat to local marine ecosystems and food chains. Although some heavy metals are essential nutrients for plants and animals, higher concentrations can be toxic and hazardous. To mitigate this threat, developing quantifiable proxies for monitoring heavy metal concentrations in near-shore marine environments is essential. Here, we describe culture experiments to quantify uptake of some heavy metals using live juvenile specimens of the large benthic foraminifera (LBF) Amphisorus hemprichii collected from the subtropical waters of Rottnest Island located ~20 km offshore Perth, South West Australia. The uptake of Mn, Ni, Cd, and Pb in the newly precipitated chambers of Amphisorus hemprichii in the laboratory was characterized using the micro-analytical technique, laser ablation inductively coupled plasma mass spectrometry. We found no significant increase in Mn, Ni, Cd, and Pb incorporation in the tests of Amphisorus hemprichii with increasing temperature and light intensities. Importantly, we found that changes in the concentrations of Mn, Ni, and Cd in the A. hemprichii tests are directly proportional to those in the culture solution over a wide range of concentrations. The calculated partition coefficients for Mn, Ni, and Cd from our culture experiments are 1.3±0.2, 0.3±0.04, 2.6±0.3, respectively. These multi-element calibration studies now enable A. hemprichii to be utilized as a naturally occurring bio-archive to quantitatively monitor the anthropogenic pollution of Mn, Ni, and Cd in coastal waters.


Assuntos
Foraminíferos , Metais Pesados , Poluentes Químicos da Água , Animais , Efeitos Antropogênicos , Carbonato de Cálcio , Ecossistema , Monitoramento Ambiental , Sedimentos Geológicos , Metais Pesados/análise , Água do Mar , Poluentes Químicos da Água/análise
8.
Data Brief ; 39: 107662, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34926740

RESUMO

Regional data from the UK Government's Department for Transport has been analyzed to produce a forecasted dataset of the uptake of electric vehicles (EVs) within Counties of England to the first quarter of the year 2100 using an S-curve methodology. This data includes all vehicles, not just cars. The historic proportion of electric vehicles in the fleets of these regions is calculated using data from 2011 Q4 to 2021 Q1. This data is then analyzed using SCATE, the S-Curve Adoption Tool for EVs to forecast the future proportion of electric vehicles in these Counties. Two data tables are presented: the reformatted historic data and the data from the S-curve analysis. Data is also presented for the collective UK.

9.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-33972407

RESUMO

Ocean warming and acidification threaten the future growth of coral reefs. This is because the calcifying coral reef taxa that construct the calcium carbonate frameworks and cement the reef together are highly sensitive to ocean warming and acidification. However, the global-scale effects of ocean warming and acidification on rates of coral reef net carbonate production remain poorly constrained despite a wealth of studies assessing their effects on the calcification of individual organisms. Here, we present global estimates of projected future changes in coral reef net carbonate production under ocean warming and acidification. We apply a meta-analysis of responses of coral reef taxa calcification and bioerosion rates to predicted changes in coral cover driven by climate change to estimate the net carbonate production rates of 183 reefs worldwide by 2050 and 2100. We forecast mean global reef net carbonate production under representative concentration pathways (RCP) 2.6, 4.5, and 8.5 will decline by 76, 149, and 156%, respectively, by 2100. While 63% of reefs are projected to continue to accrete by 2100 under RCP2.6, 94% will be eroding by 2050 under RCP8.5, and no reefs will continue to accrete at rates matching projected sea level rise under RCP4.5 or 8.5 by 2100. Projected reduced coral cover due to bleaching events predominately drives these declines rather than the direct physiological impacts of ocean warming and acidification on calcification or bioerosion. Presently degraded reefs were also more sensitive in our analysis. These findings highlight the low likelihood that the world's coral reefs will maintain their functional roles without near-term stabilization of atmospheric CO2 emissions.


Assuntos
Antozoários/fisiologia , Carbonato de Cálcio/metabolismo , Mudança Climática , Recifes de Corais , Animais , Antozoários/química , Carbonato de Cálcio/química , Humanos , Concentração de Íons de Hidrogênio , Oceanos e Mares , Água do Mar/química
10.
Mar Pollut Bull ; 162: 111918, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33341078

RESUMO

Anthropogenic lead (Pb) contamination resulting from the rapid growth of industrialization in coastal environments poses significant challenges. In this study, we report a novel approach utilising the large benthic foraminifera Amphisorus hemprichii as a biogeochemical archive for monitoring Pb pollution in tropical to warm-temperate coastal waters. Live juvenile specimens of A. hemprichii were cultured in the laboratory for 16 weeks with a range of seawater Pb concentrations. Lead uptake in both newly grown and pre-existing chambers of individual specimens was characterised using the microanalytical technique, Laser ablation-ICP mass spectrometry. We found that Pb concentration in the tests of cultured foraminifera in the laboratory is proportional to seawater [Pb] with the lead partition coefficient (KDPb) of 8.37 ± 0.3. This calibration together with a new biomineralisation model now enables A. hemprichii to be utilised as a naturally occurring bio-archive to quantitatively monitor anthropogenic Pb pollution in coastal waters.


Assuntos
Foraminíferos , Poluentes Químicos da Água , Monitoramento Ambiental , Sedimentos Geológicos , Chumbo , Poluentes Químicos da Água/análise
11.
Rapid Commun Mass Spectrom ; 34(23): e8918, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32767797

RESUMO

RATIONALE: Magnesium is one of the most abundant elements in the earth's crust and in seawater. Fractionation of its stable isotopes has been shown to be a useful indicator of many geological, chemical, and biological processes. For example, biogenic carbonates display an ~5‰ range of δ26 Mg values, which is attributed to variable degrees of biological control on Mg ions during biomineralisation. Understanding this biological control is essential for developing proxies based on biogenic carbonates. METHODS: In this work, we present a new approach of measuring Mg isotopes in biogenic carbonates using Laser Ablation Multi-Collector Inductively Coupled Plasma Mass Spectrometry (LA-MC-ICPMS). RESULTS: Our results show that this microanalytical approach provides relatively fast, high spatial resolution (<0.2 µm) measurements with high precision and accuracy down to 0.2‰ (2SE). To achieve high levels of precision and accuracy, baseline interferences need to be monitored and a carbonate standard with a relatively low trace metal composition similar to biogenic carbonates should be used. We also demonstrate that the matrix effect on Mg isotopes in carbonates with low Fe and Mn is limited to less than 0.2‰ fractionation under different laser parameters and low oxide condition (<0.3% ThO/Th). CONCLUSIONS: Our newly developed LA-MC-ICPMS method and its applications to biogenic carbonates show significant advantages provided by the microanalytical approach in understanding complex processes of biomineralisation in marine calcifiers.


Assuntos
Carbonatos/análise , Isótopos/análise , Lasers , Magnésio/análise , Espectrometria de Massas/métodos , Biomineralização , Carbonatos/química , Carbonatos/metabolismo
12.
Nat Commun ; 10(1): 4031, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31530800

RESUMO

Naturally heat-resistant coral populations hold significant potential for facilitating coral reef survival under rapid climate change. However, it remains poorly understood whether they can acclimatize to ocean warming when superimposed on their already thermally-extreme habitats. Furthermore, it is unknown whether they can maintain their heat tolerance upon larval dispersal or translocation to cooler reefs. We test this in a long-term mesocosm experiment using stress-resistant corals from thermally-extreme reefs in NW Australia. We show that these corals have a remarkable ability to maintain their heat tolerance and health despite acclimation to 3-6 °C cooler, more stable temperatures over 9 months. However, they are unable to increase their bleaching thresholds after 6-months acclimation to + 1 °C warming. This apparent rigidity in the thermal thresholds of even stress-resistant corals highlights the increasing vulnerability of corals to ocean warming, but provides a rationale for human-assisted migration to restore cooler, degraded reefs with corals from thermally-extreme reefs.


Assuntos
Aclimatação , Antozoários/fisiologia , Mudança Climática , Temperatura , Animais , Oceanos e Mares , Estresse Fisiológico , Termotolerância/fisiologia
13.
Proc Biol Sci ; 286(1898): 20190235, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30836872

RESUMO

Reef-building corals typically live close to the upper limits of their thermal tolerance and even small increases in summer water temperatures can lead to bleaching and mortality. Projections of coral reef futures based on forecasts of ocean temperatures indicate that by the end of this century, corals will experience their current thermal thresholds annually, which would lead to the widespread devastation of coral reef ecosystems. Here, we use skeletal cores of long-lived Porites corals collected from 14 reefs across the northern Great Barrier Reef, the Coral Sea, and New Caledonia to evaluate changes in their sensitivity to heat stress since 1815. High-density 'stress bands'-indicative of past bleaching-first appear during a strong pre-industrial El Niño event in 1877 but become significantly more frequent in the late twentieth and early twenty-first centuries in accordance with rising temperatures from anthropogenic global warming. However, the proportion of cores with stress bands declines following successive bleaching events in the twenty-first century despite increasing exposure to heat stress. Our findings demonstrate an increase in the thermal tolerance of reef-building corals and offer a glimmer of hope that at least some coral species can acclimatize fast enough to keep pace with global warming.


Assuntos
Aclimatação , Antozoários/fisiologia , Recifes de Corais , Temperatura Alta , Água do Mar/análise , Animais , Nova Caledônia , Queensland
14.
Glob Chang Biol ; 25(5): 1877-1888, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30689259

RESUMO

Ocean acidification poses a serious threat to marine calcifying organisms, yet experimental and field studies have found highly diverse responses among species and environments. Our understanding of the underlying drivers of differential responses to ocean acidification is currently limited by difficulties in directly observing and quantifying the mechanisms of bio-calcification. Here, we present Raman spectroscopy techniques for characterizing the skeletal mineralogy and calcifying fluid chemistry of marine calcifying organisms such as corals, coralline algae, foraminifera, and fish (carbonate otoliths). First, our in vivo Raman technique is the ideal tool for investigating non-classical mineralization pathways. This includes calcification by amorphous particle attachment, which has recently been controversially suggested as a mechanism by which corals resist the negative effects of ocean acidification. Second, high-resolution ex vivo Raman mapping reveals complex banding structures in the mineralogy of marine calcifiers, and provides a tool to quantify calcification responses to environmental variability on various timescales from days to years. We describe the new insights into marine bio-calcification that our techniques have already uncovered, and we consider the wide range of questions regarding calcifier responses to global change that can now be proposed and addressed with these new Raman spectroscopy tools.


Assuntos
Organismos Aquáticos/fisiologia , Calcificação Fisiológica , Água do Mar/química , Análise Espectral Raman , Animais , Organismos Aquáticos/química , Carbonatos/análise , Carbonatos/metabolismo , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo
15.
Glob Chang Biol ; 25(2): 431-447, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30456772

RESUMO

The processes that occur at the micro-scale site of calcification are fundamental to understanding the response of coral growth in a changing world. However, our mechanistic understanding of chemical processes driving calcification is still evolving. Here, we report the results of a long-term in situ study of coral calcification rates, photo-physiology, and calcifying fluid (cf) carbonate chemistry (using boron isotopes, elemental systematics, and Raman spectroscopy) for seven species (four genera) of symbiotic corals growing in their natural environments at tropical, subtropical, and temperate locations in Western Australia (latitudinal range of ~11°). We find that changes in net coral calcification rates are primarily driven by pHcf and carbonate ion concentration [ CO 3 2 - ]cf in conjunction with temperature and DICcf . Coral pHcf varies with latitudinal and seasonal changes in temperature and works together with the seasonally varying DICcf to optimize [ CO 3 2 - ]cf at species-dependent levels. Our results indicate that corals shift their pHcf to adapt and/or acclimatize to their localized thermal regimes. This biological response is likely to have critical implications for predicting the future of coral reefs under CO2 -driven warming and acidification.


Assuntos
Antozoários/fisiologia , Calcificação Fisiológica , Recifes de Corais , Água do Mar/química , Animais , Carbonatos/química , Mudança Climática , Temperatura , Austrália Ocidental
16.
Glob Chang Biol ; 24(10): 4857-4868, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29957854

RESUMO

Ocean acidification (OA) is a major threat to marine ecosystems, particularly coral reefs which are heavily reliant on calcareous species. OA decreases seawater pH and calcium carbonate saturation state (Ω), and increases the concentration of dissolved inorganic carbon (DIC). Intense scientific effort has attempted to determine the mechanisms via which ocean acidification (OA) influences calcification, led by early hypotheses that calcium carbonate saturation state (Ω) is the main driver. We grew corals and coralline algae for 8-21 weeks, under treatments where the seawater parameters Ω, pH, and DIC were manipulated to examine their differential effects on calcification rates and calcifying fluid chemistry (Ωcf , pHcf , and DICcf ). Here, using long duration experiments, we provide geochemical evidence that differing physiological controls on carbonate chemistry at the site of calcification, rather than seawater Ω, are the main determinants of calcification. We found that changes in seawater pH and DIC rather than Ω had the greatest effects on calcification and calcifying fluid chemistry, though the effects of seawater carbonate chemistry were limited. Our results demonstrate the capacity of organisms from taxa with vastly different calcification mechanisms to regulate their internal chemistry under extreme chemical conditions. These findings provide an explanation for the resistance of some species to OA, while also demonstrating how changes in seawater DIC and pH under OA influence calcification of key coral reef taxa.


Assuntos
Antozoários/fisiologia , Calcificação Fisiológica/fisiologia , Carbonatos/química , Recifes de Corais , Água do Mar/química , Animais , Antozoários/classificação , Carbonato de Cálcio/química , Carbono/química , Concentração de Íons de Hidrogênio , Oceanos e Mares
17.
Proc Biol Sci ; 285(1879)2018 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-29794042

RESUMO

High-latitude coral reefs provide natural laboratories for investigating the mechanisms and limits of coral calcification. While the calcification processes of tropical corals have been studied intensively, little is known about how their temperate counterparts grow under much lower temperature and light conditions. Here, we report the results of a long-term (2-year) study of seasonal changes in calcification rates, photo-physiology and calcifying fluid (cf) chemistry (using boron isotope systematics and Raman spectroscopy) for the coral Turbinaria reniformis growing near its latitudinal limits (34.5° S) along the southern coast of Western Australia. In contrast with tropical corals, calcification rates were found to be threefold higher during winter (16 to 17° C) compared with summer (approx. 21° C), and negatively correlated with light, but lacking any correlation with temperature. These unexpected findings are attributed to a combination of higher chlorophyll a, and hence increased heterotrophy during winter compared with summer, together with the corals' ability to seasonally modulate pHcf, with carbonate ion concentration [Formula: see text] being the main controller of calcification rates. Conversely, calcium ion concentration [Ca2+]cf declined with increasing calcification rates, resulting in aragonite saturation states Ωcf that were stable yet elevated fourfold above seawater values. Our results show that corals growing near their latitudinal limits exert strong physiological control over their cf in order to maintain year-round calcification rates that are insensitive to the unfavourable temperature regimes typical of high-latitude reefs.


Assuntos
Distribuição Animal , Antozoários/fisiologia , Calcificação Fisiológica , Animais , Boro/análise , Luz , Estações do Ano , Análise Espectral Raman , Temperatura , Austrália Ocidental
18.
Science ; 359(6371): 80-83, 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-29302011

RESUMO

Tropical reef systems are transitioning to a new era in which the interval between recurrent bouts of coral bleaching is too short for a full recovery of mature assemblages. We analyzed bleaching records at 100 globally distributed reef locations from 1980 to 2016. The median return time between pairs of severe bleaching events has diminished steadily since 1980 and is now only 6 years. As global warming has progressed, tropical sea surface temperatures are warmer now during current La Niña conditions than they were during El Niño events three decades ago. Consequently, as we transition to the Anthropocene, coral bleaching is occurring more frequently in all El Niño-Southern Oscillation phases, increasing the likelihood of annual bleaching in the coming decades.


Assuntos
Antozoários , Recifes de Corais , El Niño Oscilação Sul , Aquecimento Global , Animais , Água do Mar
19.
Proc Biol Sci ; 284(1868)2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29212728

RESUMO

Ocean acidification (OA) is a pressing threat to reef-building corals, but it remains poorly understood how coral calcification is inhibited by OA and whether corals could acclimatize and/or adapt to OA. Using a novel geochemical approach, we reconstructed the carbonate chemistry of the calcifying fluid in two coral species using both a pH and dissolved inorganic carbon (DIC) proxy (δ11B and B/Ca, respectively). To address the potential for adaptive responses, both species were collected from two sites spanning a natural gradient in seawater pH and temperature, and then subjected to three pHT levels (8.04, 7.88, 7.71) crossed by two temperatures (control, +1.5°C) for 14 weeks. Corals from the site with naturally lower seawater pH calcified faster and maintained growth better under simulated OA than corals from the higher-pH site. This ability was consistently linked to higher pH yet lower DIC values in the calcifying fluid, suggesting that these differences are the result of long-term acclimatization and/or local adaptation to naturally lower seawater pH. Nevertheless, all corals elevated both pH and DIC significantly over seawater values, even under OA. This implies that high pH upregulation combined with moderate levels of DIC upregulation promote resistance and adaptive responses of coral calcification to OA.


Assuntos
Antozoários/fisiologia , Carbonatos/química , Água do Mar/química , Animais , Calcificação Fisiológica , Carbono/análise , Recifes de Corais , Havaí , Concentração de Íons de Hidrogênio , Temperatura
20.
Sci Rep ; 7(1): 14999, 2017 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-29101362

RESUMO

In 2015/16, a marine heatwave associated with a record El Niño led to the third global mass bleaching event documented to date. This event impacted coral reefs around the world, including in Western Australia (WA), although WA reefs had largely escaped bleaching during previous strong El Niño years. Coral health surveys were conducted during the austral summer of 2016 in four bioregions along the WA coast (~17 degrees of latitude), ranging from tropical to temperate locations. Here we report the first El Niño-related regional-scale mass bleaching event in WA. The heatwave primarily affected the macrotidal Kimberley region in northwest WA (~16°S), where 4.5-9.3 degree heating weeks (DHW) resulted in 56.6-80.6% bleaching, demonstrating that even heat-tolerant corals from naturally extreme, thermally variable reef environments are threatened by heatwaves. Some heat stress (2.4 DHW) and bleaching (<30%) also occurred at Rottnest Island (32°01'S), whereas coral communities at Ningaloo Reef (23°9'S) and Bremer Bay (34°25'S) were not impacted. The only other major mass bleaching in WA occurred during a strong La Niña event in 2010/11 and primarily affected reefs along the central-to-southern coast. This suggests that WA reefs are now at risk of severe bleaching during both El Niño and La Niña years.


Assuntos
Antozoários , Recifes de Corais , Aquecimento Global , Resposta ao Choque Térmico/fisiologia , Animais , Austrália , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...