Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(9): eadd2671, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36867706

RESUMO

Gene expression is changed by disease, but how these molecular responses arise and contribute to pathophysiology remains less understood. We discover that ß-amyloid, a trigger of Alzheimer's disease (AD), promotes the formation of pathological CREB3L2-ATF4 transcription factor heterodimers in neurons. Through a multilevel approach based on AD datasets and a novel chemogenetic method that resolves the genomic binding profile of dimeric transcription factors (ChIPmera), we find that CREB3L2-ATF4 activates a transcription network that interacts with roughly half of the genes differentially expressed in AD, including subsets associated with ß-amyloid and tau neuropathologies. CREB3L2-ATF4 activation drives tau hyperphosphorylation and secretion in neurons, in addition to misregulating the retromer, an endosomal complex linked to AD pathogenesis. We further provide evidence for increased heterodimer signaling in AD brain and identify dovitinib as a candidate molecule for normalizing ß-amyloid-mediated transcriptional responses. The findings overall reveal differential transcription factor dimerization as a mechanism linking disease stimuli to the development of pathogenic cellular states.


Assuntos
Doença de Alzheimer , Humanos , Dimerização , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Peptídeos beta-Amiloides , Expressão Gênica , Fator 4 Ativador da Transcrição , Fatores de Transcrição de Zíper de Leucina Básica
2.
Cell Rep ; 41(3): 111488, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36260999

RESUMO

Cells possess several conserved adaptive mechanisms to respond to stress. Stress signaling is initiated to reestablish cellular homeostasis, but its effects on the tissue or systemic levels are far less understood. We report that the secreted luminal domain of the endoplasmic reticulum (ER) stress transducer CREB3L2 (which we name TAILS [transmissible activator of increased cell livability under stress]) is an endogenous, cell non-autonomous activator of neuronal resilience. In response to oxidative insults, neurons secrete TAILS, which potentiates hedgehog signaling through direct interaction with Sonic hedgehog (SHH) and its receptor PTCH1, leading to improved antioxidant signaling and mitochondrial function in neighboring neurons. In an in vivo model of ischemic brain injury, administration of TAILS enables survival of CNS neurons and fully preserves cognitive function in behavioral tests. Our findings reveal an SHH-mediated, cell non-autonomous branch of cellular stress signaling that confers resilience to oxidative stress in the mature brain, providing protection from ischemic neurodegeneration.


Assuntos
Antioxidantes , Proteínas Hedgehog , Proteínas Hedgehog/metabolismo , Neurônios/metabolismo , Estresse Oxidativo/fisiologia , Transdução de Sinais/fisiologia
3.
Cell Rep ; 29(2): 363-377.e5, 2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-31597097

RESUMO

Axon growth is regulated externally by attractive and repulsive cues generated in the environment. In addition, intrinsic pathways govern axon development, although the extent to which axons themselves can influence their own growth is unknown. We find that dorsal root ganglion (DRG) axons secrete a factor supporting axon growth and identify it as the C terminus of the ER stress-induced transcription factor CREB3L2, which is generated by site 2 protease (S2P) cleavage in sensory neurons. S2P and CREB3L2 knockdown or inhibition of axonal S2P interfere with the growth of axons, and C-terminal CREB3L2 is sufficient to rescue these effects. C-terminal CREB3L2 forms a complex with Shh and stabilizes its association with the Patched-1 receptor on developing axons. Our results reveal a neuron-intrinsic pathway downstream of S2P that promotes axon growth.


Assuntos
Axônios/metabolismo , Fatores de Transcrição/metabolismo , Animais , Endopeptidases/metabolismo , Gânglios Espinais/metabolismo , Técnicas de Silenciamento de Genes , Células HEK293 , Proteínas Hedgehog/metabolismo , Humanos , Ligação Proteica , Ratos Sprague-Dawley , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais , Fatores de Transcrição/química
4.
Nat Commun ; 7: 13865, 2016 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-28000671

RESUMO

Cytoplasmic dynein mediates retrograde transport in axons, but it is unknown how its transport characteristics are regulated to meet acutely changing demands. We find that stimulus-induced retrograde transport of different cargos requires the local synthesis of different dynein cofactors. Nerve growth factor (NGF)-induced transport of large vesicles requires local synthesis of Lis1, while smaller signalling endosomes require both Lis1 and p150Glued. Lis1 synthesis is also triggered by NGF withdrawal and required for the transport of a death signal. Association of Lis1 transcripts with the microtubule plus-end tracking protein APC is required for their translation in response to NGF stimulation but not for their axonal recruitment and translation upon NGF withdrawal. These studies reveal a critical role for local synthesis of dynein cofactors for the transport of specific cargos and identify association with RNA-binding proteins as a mechanism to establish functionally distinct pools of a single transcript species in axons.


Assuntos
Complexo Dinactina/metabolismo , Dineínas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Animais , Transporte Axonal/efeitos dos fármacos , Sequência de Bases , Células Cultivadas , Complexo Dinactina/genética , Feminino , Gânglios Espinais/citologia , Gânglios Espinais/embriologia , Expressão Gênica/efeitos dos fármacos , Masculino , Fator de Crescimento Neural/farmacologia , Proteínas do Tecido Nervoso/genética , Interferência de RNA , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...