Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Bot ; 132(1): 43-60, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37279362

RESUMO

BACKGROUND AND AIMS: Few studies of angiosperms have focused on androecial evolution in conjunction with evolutionary shifts in corolla morphology and pollinator relationships. The Western Hemisphere clade of Justiciinae (Acanthaceae) presents the rare opportunity to examine remarkable diversity in staminal morphology. We took a phylogenetically informed approach to examine staminal diversity in this hypervariable group and asked whether differences in anther thecae separation is associated with phylogenetically informed patterns of variation in corolla morphology. We further discuss evidence for associations between anther diversity and pollinators in this lineage. METHODS: For the Dianthera/Sarotheca/Plagiacanthus (DSP) clade of Western Hemisphere Justiciinae, we characterized floral diversity based on a series of corolla measurements and using a model-based clustering approach. We then tested for correlations between anther thecae separation and corolla traits, and for shifts in trait evolution, including evidence for convergence. KEY RESULTS: There is evolutionary vagility in corolla and anther traits across the DSP clade with little signal of phylogenetic constraint. Floral morphology clusters into four distinct groups that are, in turn, strongly associated with anther thecae separation, a novel result in Acanthaceae and, to our knowledge, across flowering plants. These cluster groups are marked by floral traits that strongly point to associations with pollinating animals. Specifically, species that are known or likely to be hummingbird pollinated have stamens with parallel thecae, whereas those that are likely bee or fly pollinated have stamens with offset, divergent thecae. CONCLUSIONS: Our results suggest that anther thecae separation is likely under selection in concert with other corolla characters. Significant morphological shifts detected by our analyses corresponded to putative shifts from insect to hummingbird pollination. Results from this study support the hypothesis that floral structures function in an integrated manner and are likely subject to selection as a suite. Further, these changes can be hypothesized to represent adaptive evolution.


Assuntos
Acanthaceae , Magnoliopsida , Abelhas , Animais , Filogenia , Evolução Biológica , Flores/anatomia & histologia , Insetos , Polinização , Aves
2.
Mol Phylogenet Evol ; 169: 107428, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35131417

RESUMO

Barleria is a genus of approximately 300 species of herbs, shrubs or, rarely, trees, that is broadly distributed across the Paleotropics. The genus is especially diverse in Tanzania, Angola, and Madagascar. A recent molecular study sampled 53 Barleria species and gathered data for five molecular markers (i.e., four chloroplast loci and the nuclear nrITS) to find support for the recognition of two subgenera previously circumscribed based on morphology, subg. Barleria and subg. Prionitis. That study further reconstructed four previously recognized sections (i.e., Fissimura, Prionitis, Somalia, Stellatohirta) as monophyletic, while three others (i.e., Barleria, Cavirostrata, Chrysothrix) were recovered as para- or polyphyletic. The present study aimed to reconstruct phylogenetic relationships within Barleria based on a broader sample of taxa and many more characters. We sampled 190 accessions representing 184 taxa, including varieties and subspecies. The dataset includes 167 of the ca. 300 species currently recognized or about 56% of total species diversity. We relied heavily on herbarium specimens to sample across the taxonomic breadth and geographic range of Barleria. Single nucleotide polymorphism data were generated using double-digest restriction-site associated DNA sequencing (ddRADseq). The maximum likelihood phylogeny corroborated the topology estimated from the chloroplast and nrITS data, but with greatly increased resolution and support for fine-scale relationships. A coalescent analysis failed to resolve distant evolutionary relationships across Barleria and between Barleria and outgroups, but recovered the same or similar topologies within each Barleria section. Importantly, the ddRADseq phylogeny recovered seven major lineages within subg. Barleria and resolved a polytomy that included B. cristata, the type species of the genus. The topology suggests at least four independent dispersal events to Madagascar followed by three subsequent radiations. Our results broadly inform our understanding of diversity and evolution in one of the largest genera of Acanthaceae, representing an important step towards a stable subgeneric classification for the genus.


Assuntos
Acanthaceae , Acanthaceae/genética , Sequência de Bases , Cloroplastos , Filogenia , Análise de Sequência de DNA
3.
Plant Direct ; 4(8): e00252, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32904806

RESUMO

Plants, and the biological systems around them, are key to the future health of the planet and its inhabitants. The Plant Science Decadal Vision 2020-2030 frames our ability to perform vital and far-reaching research in plant systems sciences, essential to how we value participants and apply emerging technologies. We outline a comprehensive vision for addressing some of our most pressing global problems through discovery, practical applications, and education. The Decadal Vision was developed by the participants at the Plant Summit 2019, a community event organized by the Plant Science Research Network. The Decadal Vision describes a holistic vision for the next decade of plant science that blends recommendations for research, people, and technology. Going beyond discoveries and applications, we, the plant science community, must implement bold, innovative changes to research cultures and training paradigms in this era of automation, virtualization, and the looming shadow of climate change. Our vision and hopes for the next decade are encapsulated in the phrase reimagining the potential of plants for a healthy and sustainable future. The Decadal Vision recognizes the vital intersection of human and scientific elements and demands an integrated implementation of strategies for research (Goals 1-4), people (Goals 5 and 6), and technology (Goals 7 and 8). This report is intended to help inspire and guide the research community, scientific societies, federal funding agencies, private philanthropies, corporations, educators, entrepreneurs, and early career researchers over the next 10 years. The research encompass experimental and computational approaches to understanding and predicting ecosystem behavior; novel production systems for food, feed, and fiber with greater crop diversity, efficiency, productivity, and resilience that improve ecosystem health; approaches to realize the potential for advances in nutrition, discovery and engineering of plant-based medicines, and "green infrastructure." Launching the Transparent Plant will use experimental and computational approaches to break down the phytobiome into a "parts store" that supports tinkering and supports query, prediction, and rapid-response problem solving. Equity, diversity, and inclusion are indispensable cornerstones of realizing our vision. We make recommendations around funding and systems that support customized professional development. Plant systems are frequently taken for granted therefore we make recommendations to improve plant awareness and community science programs to increase understanding of scientific research. We prioritize emerging technologies, focusing on non-invasive imaging, sensors, and plug-and-play portable lab technologies, coupled with enabling computational advances. Plant systems science will benefit from data management and future advances in automation, machine learning, natural language processing, and artificial intelligence-assisted data integration, pattern identification, and decision making. Implementation of this vision will transform plant systems science and ripple outwards through society and across the globe. Beyond deepening our biological understanding, we envision entirely new applications. We further anticipate a wave of diversification of plant systems practitioners while stimulating community engagement, underpinning increasing entrepreneurship. This surge of engagement and knowledge will help satisfy and stoke people's natural curiosity about the future, and their desire to prepare for it, as they seek fuller information about food, health, climate and ecological systems.

4.
Mol Phylogenet Evol ; 116: 30-48, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28705455

RESUMO

Cyrtandra (Gesneriaceae) is among the largest genera of flowering plants in the remote oceanic islands of the Pacific, with an estimated 175 species distributed across an area that extends from the Solomon Islands, east to the Marquesas Islands, and north to the Hawaiian Islands. The vast majority of species are single-island endemics that inhabit upland rainforests. Although previous molecular phylogenetic studies greatly advanced our understanding of the diversification of Pacific Cyrtandra, a number of uncertainties remain regarding phylogenetic relationships, divergence times, and biogeographic patterns within this large and widely dispersed group. In the present study, five loci (ITS, ETS, Cyrt1, psbA-trnH, and rpl32-trnL) were amplified and sequenced for phylogenetic reconstruction of 121 Cyrtandra taxa. Maximum likelihood and Bayesian inference confirmed that C. taviunensis from Fiji is sister to the remaining members of the Pacific clade. Dating analyses and ancestral area estimation indicates that the Pacific clade of Cyrtandra originated in Fiji during the Miocene ca. 9mya. All major crown lineages within the Pacific clade appeared < 5mya, coincident with the emergence of numerous Pacific islands and a subsequent increase in available habitat. The biogeographic history of Cyrtandra in the Pacific has been shaped by extinction, dispersal distance, and founder events. Biogeographic stochastic mapping analyses suggest that cladogenesis within Pacific Cyrtandra involved a combination of narrow (within-area) sympatry and founder events. A mean of 24 founder events was recovered between Pacific archipelagos, while a mean of 10 founder events was recovered within the Hawaiian archipelago.


Assuntos
Lamiales/classificação , Teorema de Bayes , DNA de Plantas/isolamento & purificação , DNA de Plantas/metabolismo , Ecossistema , Fiji , Efeito Fundador , Loci Gênicos , Especiação Genética , Ilhas , Lamiales/genética , Filogenia
5.
Syst Biol ; 63(5): 660-84, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24733412

RESUMO

More than a decade of phylogenetic research has yielded a well-sampled, strongly supported hypothesis of relationships within the large ( > 4000 species) plant family Acanthaceae. This hypothesis points to intriguing biogeographic patterns and asymmetries in sister clade diversity but, absent a time-calibrated estimate for this evolutionary history, these patterns have remained unexplored. Here, we reconstruct divergence times within Acanthaceae using fossils as calibration points and experimenting with both fossil selection and effects of invoking a maximum age prior related to the origin of Eudicots. Contrary to earlier reports of a paucity of fossils of Lamiales (an order of ∼ 23,000 species that includes Acanthaceae) and to the expectation that a largely herbaceous to soft-wooded and tropical lineage would have few fossils, we recovered 51 reports of fossil Acanthaceae. Rigorous evaluation of these for accurate identification, quality of age assessment and utility in dating yielded eight fossils judged to merit inclusion in analyses. With nearly 10 kb of DNA sequence data, we used two sets of fossils as constraints to reconstruct divergence times. We demonstrate differences in age estimates depending on fossil selection and that enforcement of maximum age priors substantially alters estimated clade ages, especially in analyses that utilize a smaller rather than larger set of fossils. Our results suggest that long-distance dispersal events explain present-day distributions better than do Gondwanan or northern land bridge hypotheses. This biogeographical conclusion is for the most part robust to alternative calibration schemes. Our data support a minimum of 13 Old World (OW) to New World (NW) dispersal events but, intriguingly, only one in the reverse direction. Eleven of these 13 were among Acanthaceae s.s., which comprises > 90% of species diversity in the family. Remarkably, if minimum age estimates approximate true history, these 11 events occurred within the last ∼ 20 myr even though Acanthaceae s.s is over 3 times as old. A simulation study confirmed that these dispersal events were significantly skewed toward the present and not simply a chance occurrence. Finally, we review reports of fossils that have been assigned to Acanthaceae that are substantially older than the lower Cretaceous estimate for Angiosperms as a whole (i.e., the general consensus that has resulted from several recent dating and fossil-based studies in plants). This is the first study to reconstruct divergence times among clades of Acanthaceae and sets the stage for comparative evolutionary research in this and related families that have until now been thought to have extremely poor fossil resources.


Assuntos
Acanthaceae/classificação , Fósseis , Acanthaceae/genética , DNA Espaçador Ribossômico/genética , Genes de Plantas/genética , Filogenia , Pólen/citologia , Tempo
6.
PLoS One ; 8(1): e55677, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23383261

RESUMO

Gene flow between closely related species is a frequent phenomenon that is known to play important roles in organismal evolution. Less clear, however, is the importance of hybridization between distant relatives. We present molecular and morphological evidence that support origin of the plant genus Physacanthus via "wide hybridization" between members of two distantly related lineages in the large family Acanthaceae. These two lineages are well characterized by very different morphologies yet, remarkably, Physacanthus shares features of both. Chloroplast sequences from six loci indicate that all three species of Physacanthus contain haplotypes from both lineages, suggesting that heteroplasmy likely predated speciation in the genus. Although heteroplasmy is thought to be unstable and thus transient, multiple haplotypes have been maintained through time in Physacanthus. The most likely scenario to explain these data is that Physacanthus originated via an ancient hybridization event that involved phylogenetically distant parents. This wide hybridization has resulted in the establishment of an independently evolving clade of flowering plants.


Assuntos
Acanthaceae/genética , Evolução Molecular , Hibridização Genética , Acanthaceae/classificação , Fluxo Gênico , Genes de Cloroplastos , Variação Genética , Fenótipo , Filogenia , Pólen/ultraestrutura
9.
Trends Ecol Evol ; 27(2): 72-7, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22118809

RESUMO

The pace of species discovery and documentation remains too slow on a human-altered planet in the midst of a massive extinction event. Increasing this pace requires altering conventional workflows. In this review, we propose that systematics needs to shift to a model of quantum contributions whereby species hypotheses are published as they are formulated and data as they are collected in web-based repositories and content-management systems. If our recommendation is followed, many species will make their first appearance on the Internet as candidate new species before documentation is complete. Acknowledging the changes that we describe may be controversial, we discuss problems that may be encountered along with possible solutions.


Assuntos
Biodiversidade , Classificação/métodos , Bases de Dados Factuais , Extinção Biológica , Internet , Filogenia
10.
Am J Bot ; 95(9): 1136-52, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21632432

RESUMO

Acanthaceae (Asteridae; Lamiales) include ∼4000 species and encompass a range of morphological diversity, habitats, and biogeographic patterns. Although they are important components of tropical and subtropical habitats worldwide, inadequate knowledge of the family's phylogenetic framework has impeded comparative research. In this study, we sampled all known lineages of Acanthaceae including Andrographideae. Also included were eight of 13 genera whose relationships remain enigmatic. We used sequence data from nrITS and four chloroplast noncoding regions, and parsimony and Bayesian methods of analysis. Results strongly support most aspects of relationships including inclusion of Avicennia in Acanthaceae. Excepting Neuracanthus, newly sampled taxa are placed with strong support; Kudoacanthus is in Justicieae, Tetramerium lineage, and the remaining enigmatic genera are in Whitfieldieae or Barlerieae, and Andrographideae are sister to Barlerieae. This last result is unanticipated, but placement of Andrographideae based on structural characters has been elusive. Neuracanthus is monophyletic but placement relative to (Whitfieldieae (Andrographideae + Barlerieae)) is weakly supported. Many clades have clear morphological synapomorphies, but nonmolecular evidence for some remains elusive. Results suggest an Old World origin with multiple dispersal events to the New World. This study informs future work by clarifying sampling strategy and identifying aspects of relationships that require further study.

11.
Ecol Lett ; 10(4): 315-31, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17355570

RESUMO

A latitudinal gradient in biodiversity has existed since before the time of the dinosaurs, yet how and why this gradient arose remains unresolved. Here we review two major hypotheses for the origin of the latitudinal diversity gradient. The time and area hypothesis holds that tropical climates are older and historically larger, allowing more opportunity for diversification. This hypothesis is supported by observations that temperate taxa are often younger than, and nested within, tropical taxa, and that diversity is positively correlated with the age and area of geographical regions. The diversification rate hypothesis holds that tropical regions diversify faster due to higher rates of speciation (caused by increased opportunities for the evolution of reproductive isolation, or faster molecular evolution, or the increased importance of biotic interactions), or due to lower extinction rates. There is phylogenetic evidence for higher rates of diversification in tropical clades, and palaeontological data demonstrate higher rates of origination for tropical taxa, but mixed evidence for latitudinal differences in extinction rates. Studies of latitudinal variation in incipient speciation also suggest faster speciation in the tropics. Distinguishing the roles of history, speciation and extinction in the origin of the latitudinal gradient represents a major challenge to future research.


Assuntos
Biodiversidade , Evolução Biológica , Geografia , Animais , Extinção Biológica , Paleontologia , Filogenia , Plantas
12.
Phytochemistry ; 63(3): 265-84, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12737977

RESUMO

GC-MS analyses of nocturnal and diurnal floral volatiles from nine tobacco species (Nicotiana; Solanaceae) resulted in the identification of 125 volatiles, including mono- and sesquiterpenoids, benzenoid and aliphatic alcohols, aldehydes and esters. Fragrance chemistry was species-specific during nocturnal emissions, whereas odors emitted diurnally were less distinct. All species emitted greater amounts of fragrance at night, regardless of pollinator affinity. However, these species differed markedly in odor complexity and emission rates, even among close relatives. Species-specific differences in emission rates per flower and per unit fresh or dry flower mass were significantly correlated; fragrance differences between species were not greatly affected by different forms of standardization. Flowers of hawkmoth-pollinated species emitted nitrogenous aldoximes and benzenoid esters on nocturnal rhythms. Four Nicotiana species in section Alatae sensu strictu have flowers that emit large amounts of 1,8 cineole, with smaller amounts of monoterpene hydrocarbons and alpha-terpineol on a nocturnal rhythm. This pattern suggests the activity of a single biosynthetic enzyme (1,8 cineole synthase) with major and minor products; however, several terpene synthase enzymes could contribute to total monoterpene emissions. Our analyses, combined with other studies of tobacco volatiles, suggest that phenotypic fragrance variation in Nicotiana is shaped by pollinator- and herbivore-mediated selection, biosynthetic pathway dynamics and shared evolutionary history.


Assuntos
Nicotiana/química , Nicotiana/fisiologia , Odorantes , Pólen , Animais , Carbono-Carbono Liases/isolamento & purificação , Carbono-Carbono Liases/metabolismo , Cromatografia Gasosa , Ritmo Circadiano/fisiologia , Flores/química , Monoterpenos/análise , Monoterpenos/química , Mariposas/fisiologia , Oximas/análise , Oximas/química , Filogenia , Especificidade da Espécie , Nicotiana/classificação , Volatilização
13.
Syst Biol ; 52(3): 334-51, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12775523

RESUMO

We examined relationships between fragrance and phylogeny using a number of approaches to coding fragrance data and comparing the hierarchical information in fragrance data with the phylogenetic signal in a DNA sequence data set. We first used distance analyses to determine which coding method(s) best distinguishes species while grouping conspecifics. Results suggest that interspecific differences in fragrance composition were maximized by coding as presence/absence of fragrance compounds and biosynthetic pathways rather than when quantitative information was also included. Useful systematic information came from both compounds and pathways and from fragrance emitted by both floral and vegetative tissues. The coding methods that emerged from the distance analyses as best distinguishing species were then adapted for use in phylogenetic analysis. Although hierarchical signal among fragrance data sets was congruent, this signal was highly incongruent with the phylogenetic signal in the DNA sequence data. Notably, topologies inferred from fragrance data sets were congruent with the DNA topology only in the most distal portions (e.g., sister group pairs or closely related species that had similar fragrance profiles were often recovered by analyses of fragrance). Examination of consistency and retention indices for individual fragrance compounds and pathways as optimized onto one of the most-parsimonious trees inferred from DNA data revealed that although most compounds were homoplastic, some compounds were perfectly congruent with the DNA phylogeny. In particular, compounds and pathways found in a few taxa were less homoplastic than those found in many taxa. Pathways that synthesize few volatiles also seem to have lower homoplasy than those that produce many. Although fragrance data as a whole may not be useful in phylogeny reconstruction, these data can provide additional support for clades reconstructed with other types of characters. Factors other than phylogeny, including pollinator interactions, also likely influence fragrance composition.


Assuntos
Nyctaginaceae/classificação , Filogenia , Sequência de Bases , DNA de Cloroplastos/genética , DNA Ribossômico/genética , Dados de Sequência Molecular , Nyctaginaceae/genética , Nyctaginaceae/metabolismo , Odorantes/análise , Óleos Voláteis/metabolismo , Especificidade da Espécie
14.
Evolution ; 46(5): 1329-1346, 1992 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28569006

RESUMO

I examined three aspects of the cladistic treatment of a set of 17 F1 hybrids of known parental origin: (1) impact of hybrids on consistency index (CI) and number of most parsimonious trees (Trees), (2) placement of hybrids in cladograms, and (3) impact of hybrids on hypotheses of relationship among species. The hybrids were added singly and in randomly selected sets of two to five to a data set composed of Central American species of Aphelandra (including the parents of all hybrids). Compared to analyses with the same number of OTUs all of which were species, the analyses with hybrids yielded results with significantly higher CI. There was no difference in Trees between analyses with hybrids versus species. There was thus no evidence that hybrids would appear to be more problematic for cladistic methods than species. Accordingly, hybrids will not be readily identifiable as taxa that cause marked change in these indices. About % of the hybrids were placed as the cladistically basal members of the lineage that included the most apomorphic parent. Relatively apomorphic hybrids were placed proximate to the most derived parent (ca. 13% of hybrids). Other placements occurred more rarely. The most frequent placements of hybrids thus did not distinguish them from normal intermediate or apomorphic taxa. When analyses with hybrids yielded multiple most parsimonious trees, these were no more different from each other than were the equally parsimonious trees that resulted from analyses with species. Most analyses with one or two hybrids resulted in minor or no change in topology. When hybrids caused topological change, they frequently caused rearrangements of weakly supported portions of the cladogram that did not include their parents. When they disrupted the cladistic placement of their parents, they often caused their parents to change positions, with at least one topology bringing the parental lineages into closer proximity with the hybrid placed between them. Hybrids between parents from the two main lineages of the group caused total cladistic restructuring. In fact, the degree of relationship between a hybrid's parents (measured by both cladistic and patristic distance) was strongly correlated with CI (negatively) and with the degree of disturbance to cladistic relationships (positively). Thus, hybrids between distantly related parents resulted in cladograms with low CI and major topological changes. This study suggests that hybrids are unlikely to cause breakdown of cladistic structure unless they are between distantly related parents. However, these results also indicate that cladistics may not be specially useful in distinguishing hybrids from normal taxa. The applicability of these results to other kinds of hybrids is examined and the likely cladistic treatment of hybrids using other sources of data is discussed.

15.
Evolution ; 44(6): 1685-1700, 1990 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28564300

RESUMO

Interspecific hybridization is considered common among plants, but the methods of cladistic systematics produce only divergently branching phylogenetic hypotheses and thus cannot give the correct phylogeny if an analysis includes hybrids. Empirical studies of the impact of known hybrids on phylogenetic analysis are lacking, and are necessary to begin to understand the problems that we face if hybrids are often included in cladistic analysis. Examination of the implications of hybrids for cladistics must begin with patterns of character expression in hybrids. This study includes 17 hybrids and their nine parental taxa that are Central American species of Aphelandra (Acanthaceae), analyzed using a set of 50 morphological characters. The hybrids are overwhelmingly intermediate as quantitatively scored for phylogenetic analysis. They express maternal and paternal, and primitive and derived characters in equal frequencies, showing no evidence of predominant inheritance of derived character states as has been assumed by most cladists who have considered hybrids theoretically. Because of their known genetic constitution, hybrids were useful in homology assessment and ordering character states. The parental character set was generally robust, but some changes were made to reflect the special evidence offered by the hybrids. These hybrids suggest that the inclusion of hybrids in phylogenetic analysis will not lead to unresolved cladograms with rampant homoplasy, as has been predicted by other authors. Instead, the patterns of character inheritance in these hybrids lead to the prediction that a hybrid will be placed by phylogenetic analysis as a basal lineage to the clade that includes its most derived parent, with relatively little effect on homoplasy. These predictions will be evaluated by incorporation of the hybrids in phylogenetic analyses, to be reported in a subsequent paper.

16.
Oecologia ; 68(2): 218-223, 1986 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28310130

RESUMO

The neotropical shrub Pentagonia macrophylla Benth. (Rubiaceae) has protandrous two-day flowers. Synchronous development among flowers on a single individual results in sequential phenotypic unisexuality: the entire plant alternates gender from day to day. Pistillate flowers produce more nectar than staminate flowers at comparable hours, but this difference does not result in different paterns of visitation to male and female flowers by hummingbird pollinators. Rare periods of bisexuality occur due to asynchronous floral development within or between inflorescences and are always followed by return to a synchronized pattern of alternation of gender. Reestablishment of synchrony usually involves a timeframe shift in the pattern of flowering (i.e., a plant produces staminate flowers on days when it previously would have been pistillate). It is suggested that timeframe shifts occur in response to inadequate pollination and serve to either desynchronize the plant from neighboring conspecifics or to temporarily allow self-pollination.

17.
Oecologia ; 64(1): 61-67, 1984 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28311639

RESUMO

Female reproductive success (fruit and seed set) in Pavonia dasypetala (Malvaceae) was only weakly related to pollinator attentiveness (number of pollinator visits and number of pollen grains deposited on stigmas). This result has implications for field studies of pollination: observational measures of pollinator attentiveness do not necessarily provide an, accurate basis for inferring reproductive success. Further, these results indicate that, although pollination is essential for seed set in this species, reproduction is not limited by pollination. Many flowers that were visited numerous times by hummingbirds and that received pollen in excess of the number of ovules per flower failed to produce fruits. If pollen is limiting, it is pollen quality rather than quantity that is inadequate. Patterns of reproduction in this species were as predicted if resource availability limits seed set (Stephenson 1981): (1) among mature fruits there was an excess of fruits with full seed set (4 or 5 seeds) and (2) probability of fruit, set decreased over the reproductive season. However, resource availability was not the only determinant of seed set in this species: there was also variation among individuals that seems unrelated to either pollen or resource availability. Reproductive success thus appears to be determined by several factors and cannot be described as simply pollen or resource limited.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...