Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 10: 988227, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36339045

RESUMO

The spectral quality of sunlight reaching plants remains a path for optimization in greenhouse cultivation. Quantum dots represent a novel, emission-tunable luminescent material for optimizing the sunlight spectrum in greenhouses with minimal intensity loss, ultimately enabling improved light use efficiency of plant growth without requiring electricity. In this study, greenhouse films containing CuInS2/ZnS quantum dots were utilized to absorb and convert ultraviolet and blue photons from sunlight to a photoluminescent emission centered at 600 nm. To analyze the effects of the quantum dot film spectrum on plant production, a 25-week tomato trial was conducted in Dutch glass greenhouses. Plants under the quantum dot film experienced a 14% reduction in overall daily light integral, resulting from perpendicular photosynthetically active radiation transmission of 85.3%, mainly due to reflection losses. Despite this reduction in intensity, the modified sunlight spectrum and light diffusion provided by the quantum dot film gave rise to 5.7% improved saleable production yield, nearly identical total fruiting biomass production, 23% higher light use efficiency (g/mol), 10% faster vegetative growth rate, and 36% reduced tomato waste compared to the control, which had no additional films. Based on this result, materials incorporating quantum dots show promise in enabling passive, electricity-free spectrum modification for improving crop production in greenhouse cultivation, but extensive controlled crop studies are needed to further validate their effectiveness.

2.
ACS Appl Mater Interfaces ; 14(26): 29679-29689, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35729115

RESUMO

While luminescent solar concentrators (LSCs) have been researched for several decades, there is still a lack of commercially available systems, mostly due to scalability, performance, aesthetics, or some combination of these challenges. These obstacles can be overcome by the systematic optimization of a laminated glass LSC design, demonstrated herein. In particular, we first show that it is possible to improve optical and electrical efficiencies of an LSC by fine-tuned optimization of the constituent fluorophore-containing interlayer resin. Further still, an increased understanding of commercially available solar cells allows us to establish a direct correlation between the device's optical and electrical efficiency. Next, optical characterization of LSCs of varying sizes allows us to elucidate the main loss mechanisms in our LSCs, as well as ways to mitigate them. Altogether these optimization steps create opportunities for high-performance multi-interlayer LSC devices with demonstrated electrical power conversion efficiency as high as 1.1% to 4.9% at visual light transmission of 74% to 5%. Furthermore, careful examination of different blue-color (red-band absorbing) dyes provides a path for color-tunability of LSC windows toward neutral regimes. Design iterations of multiple device form factors enabled a color-neutral prototype without significant performance losses by separating color-neutralizing and LSC layers into different panes of an insulated glass unit. This work demonstrates the importance of LSC design optimization in achieving high-performance solar window technology with commercially acceptable aesthetics.

3.
Commun Biol ; 4(1): 124, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33504914

RESUMO

Bioregenerative life-support systems (BLSS) involving plants will be required to realize self-sustaining human settlements beyond Earth. To improve plant productivity in BLSS, the quality of the solar spectrum can be modified by lightweight, luminescent films. CuInS2/ZnS quantum dot (QD) films were used to down-convert ultraviolet/blue photons to red emissions centered at 600 and 660 nm, resulting in increased biomass accumulation in red romaine lettuce. All plant growth parameters, except for spectral quality, were uniform across three production environments. Lettuce grown under the 600 and 660 nm-emitting QD films respectively increased edible dry mass (13 and 9%), edible fresh mass (11% each), and total leaf area (8 and 13%) compared with under a control film containing no QDs. Spectral modifications by the luminescent QD films improved photosynthetic efficiency in lettuce and could enhance productivity in greenhouses on Earth, or in space where, further conversion is expected from greater availability of ultraviolet photons.


Assuntos
Produtos Agrícolas , Ambiente Controlado , Lactuca , Pontos Quânticos , Espectro de Ação/métodos , Espectro de Ação/normas , Biofortificação/métodos , Calibragem , Cobre/química , Produtos Agrícolas/química , Produtos Agrícolas/efeitos da radiação , Radiação Eletromagnética , Humanos , Lactuca/crescimento & desenvolvimento , Lactuca/metabolismo , Lactuca/efeitos da radiação , Luz , Fotossíntese/efeitos da radiação , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/efeitos da radiação , Melhoria de Qualidade , Pontos Quânticos/química , Atividade Solar , Sulfetos/química , Compostos de Zinco/química
4.
ACS Appl Bio Mater ; 3(12): 8567-8574, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35019627

RESUMO

Near-infrared (NIR) emitting quantum dots (QDs) with emission in the biological transparency windows (NIR-I: 650-950 nm and NIR-II: 1000-1350 nm) are promising candidates for deep-tissue bioimaging. However, they typically contain toxic heavy metals such as cadmium, mercury, arsenic, or lead. We report on the biocompatibility of high brightness CuInSexS2-x/ZnS (CISeS/ZnS) QDs with a tunable emission covering the visible to NIR (550-1300 nm peak emission) and quantify the transmission of their photoluminescence through multiple biological components to evaluate their use as imaging agents. In general, CISeS/ZnS QDs were less cytotoxic to mouse fibroblast cells when compared with commercial CdSe/ZnS and InP/ZnS QDs. Surprisingly, InP/ZnS QDs significantly upregulated expression of apoptotic genes in mouse fibroblast cells, while cells exposed to CISeS/ZnS QDs did not. These findings provide insight into biocompatibility and cytotoxicity of CISeS/ZnS QDs that could be used for bioimaging.

5.
ACS Nano ; 13(8): 9112-9121, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31291097

RESUMO

While luminescent concentrators (LCs) are mainly designed to harvest sunlight and convert its energy into electricity, the same concept can be advantageous in alternative applications. Examples of such applications are demonstrated here by coupling the edge-guided light of high-performance LCs based on CuInSexS2-x/ZnS quantum dots into optical fibers with emission covering visible-to-NIR spectral regions. In particular, a cost-efficient, miniature broadband light source for medical diagnostics, a spectral-conversion and light-guiding device for agriculture, and a large-area broadband tunable detector for telecommunications are demonstrated. Various design considerations and performance optimization approaches are discussed and summarized. Prototypes of the devices are manufactured and tested. Individual elements of the broadband light source show coupling efficiencies up to 1%, which is sufficient to saturate typical fiber-coupled spectrometers at a minimal integration time of 1 ms using 100 mW blue excitation. Agricultural devices are capable of delivering ∼10% of photosynthetically active radiation (per device) converted from absorbed sunlight to the lower canopy of plants, which boosted the tomato yield in a commercial greenhouse by 7% (fresh weight). Finally, large-scale prototype detectors can be used to discern time-modulated unfocused signals with an average power as low as 1 µW, which would be useful for free-space telecommunication systems. Fully optimized devices are expected to make significant impacts on speed and bandwidth of free-space telecommunication systems, medical diagnostics, and greenhouse crop yields.


Assuntos
Fibras Ópticas , Pontos Quânticos/química , Energia Solar , Telecomunicações/tendências , Agricultura/tendências , Técnicas de Laboratório Clínico/tendências , Humanos , Iluminação , Luminescência , Pontos Quânticos/uso terapêutico , Refratometria , Luz Solar
6.
Nano Lett ; 18(10): 6353-6359, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30193071

RESUMO

CuInS2 (CIS) quantum dots (QDs) have emerged as one of the most promising candidates for application in a number of new technologies, mostly due to their heavy-metal-free composition and their unique optical properties. Among those, the large Stokes shift and the long-lived excited state are the most striking ones. Although these properties are important, the physical mechanism that originates them is still under debate. Here, we use two-photon absorption spectroscopy and ultrafast dynamics studies to investigate the physical origin of those phenomena. From the two-photon absorption spectroscopy, we observe yet another unique property of CIS QDs, a two-photon absorption transition below the one-photon absorption band edge, which has never been observed before for any other semiconductor nanostructure. This originates from the inversion of the 1S and 1P hole level order at the top of the valence band and results in a blue-shift of the experimentally measured one photon absorption edge by nearly 100 to 200 meV. However, this shift is not large enough to account for the Stokes shift observed, 200-500 meV. Consequently, despite the existence of the below band gap optical transition, photoluminescence in CIS QDs must originate from trap sites. These conclusions are reinforced by the multiexciton dynamics studies. From those, we demonstrate that biexciton Auger recombination behaves similarly to negative trion dynamics on these nanomaterials, which suggests that the trap state is an electron donating site.

7.
Nano Lett ; 17(7): 4508-4517, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28613906

RESUMO

Ternary CuInS2 nanocrystals (CIS NCs) are attracting attention as nontoxic alternatives to heavy metal-based chalcogenides for many technologically relevant applications. The photophysical processes underlying their emission mechanism are, however, still under debate. Here we address this problem by applying, for the first time, spectro-electrochemical methods to core-only CIS and core/shell CIS/ZnS NCs. The application of an electrochemical potential enables us to reversibly tune the NC Fermi energy and thereby control the occupancy of intragap defects involved in exciton decay. The results indicate that, in analogy to copper-doped II-VI NCs, emission occurs via radiative capture of a conduction-band electron by a hole localized on an intragap state likely associated with a Cu-related defect. We observe the increase in the emission efficiency under reductive electrochemical potential, which corresponds to raising the Fermi level, leading to progressive filling of intragap states with electrons. This indicates that the factor limiting the emission efficiency in these NCs is nonradiative electron trapping, while hole trapping is of lesser importance. This observation also suggests that the centers for radiative recombination are Cu2+ defects (preexisting and/or accumulated as a result of photoconversion of Cu1+ ions) as these species contain a pre-existing hole without the need for capturing a valence-band hole generated by photoexcitation. Temperature-controlled photoluminescence experiments indicate that the intrinsic limit on the emission efficiency is imposed by multiphonon nonradiative recombination of a band-edge electron and a localized hole. This process affects both shelled and unshelled CIS NCs to a similar degree, and it can be suppressed by cooling samples to below 100 K. Finally, using experimentally measured decay rates, we formulate a model that describes the electrochemical modulation of the PL efficiency in terms of the availability of intragap electron traps as well as direct injection of electrons into the NC conduction band, which activates nonradiative Auger recombination, or electrochemical conversion of the Cu2+ states into the Cu1+ species that are less emissive due to the need for their "activation" by the capture of photogenerated holes.

8.
Nat Nanotechnol ; 10(10): 878-85, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26301902

RESUMO

Luminescent solar concentrators serving as semitransparent photovoltaic windows could become an important element in net zero energy consumption buildings of the future. Colloidal quantum dots are promising materials for luminescent solar concentrators as they can be engineered to provide the large Stokes shift necessary for suppressing reabsorption losses in large-area devices. Existing Stokes-shift-engineered quantum dots allow for only partial coverage of the solar spectrum, which limits their light-harvesting ability and leads to colouring of the luminescent solar concentrators, complicating their use in architecture. Here, we use quantum dots of ternary I-III-VI2 semiconductors to realize the first large-area quantum dot-luminescent solar concentrators free of toxic elements, with reduced reabsorption and extended coverage of the solar spectrum. By incorporating CuInSexS2-x quantum dots into photo-polymerized poly(lauryl methacrylate), we obtain freestanding, colourless slabs that introduce no distortion to perceived colours and are thus well suited for the realization of photovoltaic windows. Thanks to the suppressed reabsorption and high emission efficiencies of the quantum dots, we achieve an optical power efficiency of 3.2%. Ultrafast spectroscopy studies suggest that the Stokes-shifted emission involves a conduction-band electron and a hole residing in an intragap state associated with a native defect.

9.
Adv Mater ; 27(10): 1701-5, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25613726

RESUMO

CuInSe(x)S(2-x) quantum dot field-effect transistors show p-type, n-type, and ambipolar behaviors with carrier mobilities up to 0.03 cm(2) V(-1) s(-1). Although some design rules from studies of cadmium and lead containing quantum dots can be applied, remarkable differences are observed including a strong gating effect in as-synthesized nanocyrstals with long ligands.

10.
J Phys Chem Lett ; 5(1): 111-8, 2014 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-26276189

RESUMO

Transient absorption and time-resolved photoluminescence measurements of high-performance mesoporous TiO2 photoanodes sensitized with CuInSexS2-x quantum dots reveal the importance of hole scavenging in the characterization of photoinduced electron transfer. The apparent characteristic time of this process strongly depends on the local environment of the quantum dot/TiO2 junction due to accumulation of long-lived positive charges in the quantum dots. The presence of long-lived photoexcited holes introduces artifacts due to fast positive-trion Auger decay (60 ps time constant), which can dominate electron dynamics and thus mask true electron transfer. We show that the presence of a redox electrolyte is critical to the accurate characterization of charge transfer, since it enables fast extraction of holes and helps maintain charge neutrality of the quantum dots. Although electron transfer is observed to be relatively slow (19 ns time constant), a high electron extraction efficiency (>95%) can be achieved because in well-passivated CuInSexS2-x quantum dots neutral excitons have significantly longer lifetimes of hundreds of nanoseconds.

11.
J Phys Chem Lett ; 5(23): 4105-9, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26278940

RESUMO

We compare the absorption, photoluminescence, and magneto-optical properties of colloidal CuInS2 (CIS) nanocrystals with two closely related and well-understood binary analogs: Cu-doped ZnSe nanocrystals and CdSe nanocrystals. In contrast with conventional CdSe, both CIS and Cu-doped ZnSe nanocrystals exhibit a substantial energy separation between emission and absorption peaks (Stokes shift) and a marked asymmetry in the polarization-resolved low-temperature magneto-photoluminescence, both of which point to the role of localized dopant/defect states in the forbidden gap. Surprisingly, we find evidence in CIS nanocrystals of spin-exchange coupling between paramagnetic moments in the nanocrystal and the conduction/valence bands of the host lattice, a behavior also observed in Cu-doped ZnSe nanocrystals, where the copper atoms incorporate as paramagnetic Cu(2+) ions.

12.
Nat Commun ; 4: 2887, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24322379

RESUMO

Solution-processed semiconductor quantum dot solar cells offer a path towards both reduced fabrication cost and higher efficiency enabled by novel processes such as hot-electron extraction and carrier multiplication. Here we use a new class of low-cost, low-toxicity CuInSexS2-x quantum dots to demonstrate sensitized solar cells with certified efficiencies exceeding 5%. Among other material and device design improvements studied, use of a methanol-based polysulfide electrolyte results in a particularly dramatic enhancement in photocurrent and reduced series resistance. Despite the high vapour pressure of methanol, the solar cells are stable for months under ambient conditions, which is much longer than any previously reported quantum dot sensitized solar cell. This study demonstrates the large potential of CuInSexS2-x quantum dots as active materials for the realization of low-cost, robust and efficient photovoltaics as well as a platform for investigating various advanced concepts derived from the unique physics of the nanoscale size regime.

13.
Nat Commun ; 4: 2661, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24157692

RESUMO

Development of light-emitting diodes (LEDs) based on colloidal quantum dots is driven by attractive properties of these fluorophores such as spectrally narrow, tunable emission and facile processibility via solution-based methods. A current obstacle towards improved LED performance is an incomplete understanding of the roles of extrinsic factors, such as non-radiative recombination at surface defects, versus intrinsic processes, such as multicarrier Auger recombination or electron-hole separation due to applied electric field. Here we address this problem with studies that correlate the excited state dynamics of structurally engineered quantum dots with their emissive performance within LEDs. We find that because of significant charging of quantum dots with extra electrons, Auger recombination greatly impacts both LED efficiency and the onset of efficiency roll-off at high currents. Further, we demonstrate two specific approaches for mitigating this problem using heterostructured quantum dots, either by suppressing Auger decay through the introduction of an intermediate alloyed layer, or by using an additional shell that impedes electron transfer into the quantum dot to help balance electron and hole injection.

14.
ACS Nano ; 7(4): 3411-9, 2013 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-23521208

RESUMO

The influence of a CdSexS1-x interfacial alloyed layer on the photophysical properties of core/shell CdSe/CdS nanocrystal quantum dots (QDs) is investigated by comparing reference QDs with a sharp core/shell interface to alloyed structures with an intermediate CdSexS1-x layer at the core/shell interface. To fully realize the structural contrast, we have developed two novel synthetic approaches: a method for fast CdS-shell growth, which results in an abrupt core/shell boundary (no intentional or unintentional alloying), and a method for depositing a CdSexS1-x alloy layer of controlled composition onto the CdSe core prior to the growth of the CdS shell. Both types of QDs possess similar size-dependent single-exciton properties (photoluminescence energy, quantum yield, and decay lifetime). However the alloyed QDs show a significantly longer biexciton lifetime and up to a 3-fold increase in the biexciton emission efficiency compared to the reference samples. These results provide direct evidence that the structure of the QD interface has a significant effect on the rate of nonradiative Auger recombination, which dominates biexciton decay. We also observe that the energy gradient at the core-shell interface introduced by the alloyed layer accelerates hole trapping from the shell to the core states, which results in suppression of shell emission. This comparative study offers practical guidelines for controlling multicarrier Auger recombination without a significant effect on either spectral or dynamical properties of single excitons. The proposed strategy should be applicable to QDs of a variety of compositions (including, e.g., infrared-emitting QDs) and can benefit numerous applications from light emitting diodes and lasers to photodetectors and photovoltaics.


Assuntos
Ligas/química , Compostos de Cádmio/química , Cristalização/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Pontos Quânticos , Compostos de Selênio/química , Sulfetos/química , Transporte de Elétrons , Teste de Materiais , Tamanho da Partícula
15.
J Phys Chem Lett ; 4(3): 355-61, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-26281723

RESUMO

Colloidal CuInSexS2-x quantum dots (QDs) are an attractive less-toxic alternative to PbX and CdX (X = S, Se, and Te) QDs for solution-processed semiconductor devices. This relatively new class of QD materials is particularly suited to serving as an absorber in photovoltaics, owing to its high absorption coefficient and near-optimal and finely tunable band gap. Here, we engineer CuInSexS2-x QD sensitizers for enhanced performance of QD-sensitized TiO2 solar cells (QDSSCs). Our QD synthesis employs 1-dodecanethiol (DDT) as a low-cost solvent, which also serves as a ligand, and a sulfur precursor; addition of triakylphosphine selenide leads to incorporation of controlled amounts of selenium, reducing the band gap compared to that of pure CuInS2 QDs. This enables significantly higher photocurrent in the near-infrared (IR) region of the solar spectrum without sacrificing photovoltage. In order to passivate QD surface recombination centers, we perform a surface-cation exchange with Cd prior to sensitization, which enhances chemical stability and leads to a further increase in photocurrent. We use the synthesized QDs to demonstrate proof-of-concept QDSSCs with up to 3.5% power conversion efficiency.

17.
J Phys Chem Lett ; 3(9): 1094-8, 2012 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-26288042

RESUMO

Type-II nanorod heterostructures (NRHs) exhibit efficient directional charge separation and provide the potential to control this flow of charges through changes in structure and composition. We use transient-absorption spectroscopy to investigate how the magnitude of band offset and lattice strain alters dynamics of photogenerated electrons in CdSe/CdTe type-II NRHs. In the absence of alloying and strain effects, electron transfer occurs in ∼300 fs. Reducing the conduction band offset by means of alloying leads to an even shorter charge-separation time (<200 fs), whereas curved NRHs with pronounced strain exhibit a longer charge-separation time of ∼700 fs.

18.
ACS Nano ; 5(9): 7677-83, 2011 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-21866952

RESUMO

High-quality epitaxial interfaces and delicate control over shape anisotropy make nanorod heterostructures (NRHs) with staggered band offsets efficient in separating and directing photogenerated carriers. Combined with versatile and scalable wet chemical means of synthesis, these salient features of NRHs are useful for improving both the performance and the cost-effectiveness of photovoltaics (PVs). However, inefficient carrier transport and extraction have imposed severe limitations, outweighing the benefits of enhanced charge separation. Hence integration of type II NRHs into PVs has thus far been unfruitful. Here, we demonstrate PVs that utilize NRHs as an extremely thin absorber between electron and hole transporting layers. In the limit approaching monolayer thickness, PVs incorporating NRHs have up to three times the short circuit current and conversion efficiency over devices made from their single-component counterparts. Comparisons between linear and curved NRHs are also made, revealing the importance of internal geometry and heterointerfacial area for enhanced contribution of charge-separated state absorption to photocurrent and in contacting charge transport layers.

19.
J Am Chem Soc ; 132(10): 3286-8, 2010 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-20163144

RESUMO

Type-II band-offset CdSe/CdTe nanorod heterostructures with curved and linear shapes have been synthesized and examined with atomic-resolution transmission electron microscopy techniques. Strain from growth of larger-lattice CdTe partly on the sides of CdSe nanorod seeds is shown to lead to an overall curvature in the rods. Lattice expansion from the inner to the outer portion of the curved region exceeds the expected lattice mismatch between the two materials because of the buildup of an unusual compressive strain in the CdSe. In contrast, exclusive tip growth results in linear barbell-shaped heterostructures that do not exhibit strain-induced curvature. The ability to vary the anisotropic lattice strain should allow control over the underlying electronic structure, providing new approaches to directing photogenerated carriers that may facilitate incorporation of nanorod heterostructures in various energy applications.

20.
ACS Nano ; 3(2): 434-40, 2009 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-19236082

RESUMO

To better understand the growth mechanism leading to enhanced anisotropy in nanocrystal heterostructures synthesized from nearly spherical seeds, we have examined various factors that contribute to structural diversification in Fe(3)O(4)/CdS systems. Pseudoseparation of nucleation and growth allows us to quantify how the number of heterojunctions formed varies with concentration and the size of the seed nanocrystals. A careful examination of the size dependence of the maximum number of CdS particles that can nucleate per seed nanocrystal suggests strain induced limitations. By increasing the growth rate, we observe an enhancement of spatial anisotropy in rods-on-dot heterostructures without the need for rod promoting capping molecules such as phosphonic acids. Crystallographic details allow us to identify three distinct morphologies that can arise in rods-on-dot heterostructures due to zinc blende/wurtzite polytypism in CdS. In all three cases, the junction planes contain identical or nearly identical coincidence sites.


Assuntos
Compostos de Cádmio/química , Óxido Ferroso-Férrico/química , Nanoestruturas/química , Tamanho da Partícula , Sulfetos/química , Anisotropia , Cristalização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...