Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38608311

RESUMO

Open Targets, a consortium among academic and industry partners, focuses on using human genetics and genomics to provide insights to key questions that build therapeutic hypotheses. Large-scale experiments generate foundational data, and open-source informatic platforms systematically integrate evidence for target-disease relationships and provide dynamic tooling for target prioritization. A locus-to-gene machine learning model uses evidence from genome-wide association studies (GWAS Catalog, UK BioBank, and FinnGen), functional genomic studies, epigenetic studies, and variant effect prediction to predict potential drug targets for complex diseases. These predictions are combined with genetic evidence from gene burden analyses, rare disease genetics, somatic mutations, perturbation assays, pathway analyses, scientific literature, differential expression, and mouse models to systematically build target-disease associations (https://platform.opentargets.org). Scored target attributes such as clinical precedence, tractability, and safety guide target prioritization. Here we provide our perspective on the value and impact of human genetics and genomics for generating therapeutic hypotheses.

2.
Nucleic Acids Res ; 52(D1): D10-D17, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38015445

RESUMO

The European Molecular Biology Laboratory's European Bioinformatics Institute (EMBL-EBI) is one of the world's leading sources of public biomolecular data. Based at the Wellcome Genome Campus in Hinxton, UK, EMBL-EBI is one of six sites of the European Molecular Biology Laboratory (EMBL), Europe's only intergovernmental life sciences organisation. This overview summarises the latest developments in the services provided by EMBL-EBI data resources to scientific communities globally. These developments aim to ensure EMBL-EBI resources meet the current and future needs of these scientific communities, accelerating the impact of open biological data for all.


Assuntos
Academias e Institutos , Biologia Computacional , Biologia Computacional/organização & administração , Biologia Computacional/tendências , Academias e Institutos/organização & administração , Academias e Institutos/tendências , Bases de Dados de Ácidos Nucleicos , Europa (Continente)
3.
Genet Med ; 26(2): 101029, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37982373

RESUMO

PURPOSE: The terminology used for gene-disease curation and variant annotation to describe inheritance, allelic requirement, and both sequence and functional consequences of a variant is currently not standardized. There is considerable discrepancy in the literature and across clinical variant reporting in the derivation and application of terms. Here, we standardize the terminology for the characterization of disease-gene relationships to facilitate harmonized global curation and to support variant classification within the ACMG/AMP framework. METHODS: Terminology for inheritance, allelic requirement, and both structural and functional consequences of a variant used by Gene Curation Coalition members and partner organizations was collated and reviewed. Harmonized terminology with definitions and use examples was created, reviewed, and validated. RESULTS: We present a standardized terminology to describe gene-disease relationships, and to support variant annotation. We demonstrate application of the terminology for classification of variation in the ACMG SF 2.0 genes recommended for reporting of secondary findings. Consensus terms were agreed and formalized in both Sequence Ontology (SO) and Human Phenotype Ontology (HPO) ontologies. Gene Curation Coalition member groups intend to use or map to these terms in their respective resources. CONCLUSION: The terminology standardization presented here will improve harmonization, facilitate the pooling of curation datasets across international curation efforts and, in turn, improve consistency in variant classification and genetic test interpretation.


Assuntos
Testes Genéticos , Variação Genética , Humanos , Alelos , Bases de Dados Genéticas
5.
medRxiv ; 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37066232

RESUMO

PURPOSE: The terminology used for gene-disease curation and variant annotation to describe inheritance, allelic requirement, and both sequence and functional consequences of a variant is currently not standardized. There is considerable discrepancy in the literature and across clinical variant reporting in the derivation and application of terms. Here we standardize the terminology for the characterization of disease-gene relationships to facilitate harmonized global curation, and to support variant classification within the ACMG/AMP framework. METHODS: Terminology for inheritance, allelic requirement, and both structural and functional consequences of a variant used by Gene Curation Coalition (GenCC) members and partner organizations was collated and reviewed. Harmonized terminology with definitions and use examples was created, reviewed, and validated. RESULTS: We present a standardized terminology to describe gene-disease relationships, and to support variant annotation. We demonstrate application of the terminology for classification of variation in the ACMG SF 2.0 genes recommended for reporting of secondary findings. Consensus terms were agreed and formalized in both sequence ontology (SO) and human phenotype ontology (HPO) ontologies. GenCC member groups intend to use or map to these terms in their respective resources. CONCLUSION: The terminology standardization presented here will improve harmonization, facilitate the pooling of curation datasets across international curation efforts and, in turn, improve consistency in variant classification and genetic test interpretation.

6.
Nucleic Acids Res ; 51(D1): D1353-D1359, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36399499

RESUMO

The Open Targets Platform (https://platform.opentargets.org/) is an open source resource to systematically assist drug target identification and prioritisation using publicly available data. Since our last update, we have reimagined, redesigned, and rebuilt the Platform in order to streamline data integration and harmonisation, expand the ways in which users can explore the data, and improve the user experience. The gene-disease causal evidence has been enhanced and expanded to better capture disease causality across rare, common, and somatic diseases. For target and drug annotations, we have incorporated new features that help assess target safety and tractability, including genetic constraint, PROTACtability assessments, and AlphaFold structure predictions. We have also introduced new machine learning applications for knowledge extraction from the published literature, clinical trial information, and drug labels. The new technologies and frameworks introduced since the last update will ease the introduction of new features and the creation of separate instances of the Platform adapted to user requirements. Our new Community forum, expanded training materials, and outreach programme support our users in a range of use cases.

7.
Nucleic Acids Res ; 51(D1): D9-D17, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36477213

RESUMO

The European Molecular Biology Laboratory's European Bioinformatics Institute (EMBL-EBI) is one of the world's leading sources of public biomolecular data. Based at the Wellcome Genome Campus in Hinxton, UK, EMBL-EBI is one of six sites of the European Molecular Biology Laboratory (EMBL), Europe's only intergovernmental life sciences organisation. This overview summarises the status of services that EMBL-EBI data resources provide to scientific communities globally. The scale, openness, rich metadata and extensive curation of EMBL-EBI added-value databases makes them particularly well-suited as training sets for deep learning, machine learning and artificial intelligence applications, a selection of which are described here. The data resources at EMBL-EBI can catalyse such developments because they offer sustainable, high-quality data, collected in some cases over decades and made openly availability to any researcher, globally. Our aim is for EMBL-EBI data resources to keep providing the foundations for tools and research insights that transform fields across the life sciences.


Assuntos
Inteligência Artificial , Biologia Computacional , Gerenciamento de Dados , Bases de Dados Factuais , Genoma , Internet
9.
Genet Med ; 24(8): 1732-1742, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35507016

RESUMO

PURPOSE: Several groups and resources provide information that pertains to the validity of gene-disease relationships used in genomic medicine and research; however, universal standards and terminologies to define the evidence base for the role of a gene in disease and a single harmonized resource were lacking. To tackle this issue, the Gene Curation Coalition (GenCC) was formed. METHODS: The GenCC drafted harmonized definitions for differing levels of gene-disease validity on the basis of existing resources, and performed a modified Delphi survey with 3 rounds to narrow the list of terms. The GenCC also developed a unified database to display curated gene-disease validity assertions from its members. RESULTS: On the basis of 241 survey responses from the genetics community, a consensus term set was chosen for grading gene-disease validity and database submissions. As of December 2021, the database contained 15,241 gene-disease assertions on 4569 unique genes from 12 submitters. When comparing submissions to the database from distinct sources, conflicts in assertions of gene-disease validity ranged from 5.3% to 13.4%. CONCLUSION: Terminology standardization, sharing of gene-disease validity classifications, and resolution of curation conflicts will facilitate collaborations across international curation efforts and in turn, improve consistency in genetic testing and variant interpretation.


Assuntos
Bases de Dados Genéticas , Genômica , Testes Genéticos , Variação Genética , Humanos
10.
N Engl J Med ; 385(20): 1868-1880, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34758253

RESUMO

BACKGROUND: The U.K. 100,000 Genomes Project is in the process of investigating the role of genome sequencing in patients with undiagnosed rare diseases after usual care and the alignment of this research with health care implementation in the U.K. National Health Service. Other parts of this project focus on patients with cancer and infection. METHODS: We conducted a pilot study involving 4660 participants from 2183 families, among whom 161 disorders covering a broad spectrum of rare diseases were present. We collected data on clinical features with the use of Human Phenotype Ontology terms, undertook genome sequencing, applied automated variant prioritization on the basis of applied virtual gene panels and phenotypes, and identified novel pathogenic variants through research analysis. RESULTS: Diagnostic yields varied among family structures and were highest in family trios (both parents and a proband) and families with larger pedigrees. Diagnostic yields were much higher for disorders likely to have a monogenic cause (35%) than for disorders likely to have a complex cause (11%). Diagnostic yields for intellectual disability, hearing disorders, and vision disorders ranged from 40 to 55%. We made genetic diagnoses in 25% of the probands. A total of 14% of the diagnoses were made by means of the combination of research and automated approaches, which was critical for cases in which we found etiologic noncoding, structural, and mitochondrial genome variants and coding variants poorly covered by exome sequencing. Cohortwide burden testing across 57,000 genomes enabled the discovery of three new disease genes and 19 new associations. Of the genetic diagnoses that we made, 25% had immediate ramifications for clinical decision making for the patients or their relatives. CONCLUSIONS: Our pilot study of genome sequencing in a national health care system showed an increase in diagnostic yield across a range of rare diseases. (Funded by the National Institute for Health Research and others.).


Assuntos
Genoma Humano , Doenças Raras/genética , Adolescente , Adulto , Criança , Pré-Escolar , Características da Família , Feminino , Variação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Reação em Cadeia da Polimerase , Doenças Raras/diagnóstico , Sensibilidade e Especificidade , Medicina Estatal , Reino Unido , Sequenciamento Completo do Genoma , Adulto Jovem
11.
Elife ; 102021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34402426

RESUMO

Background: The virus SARS-CoV-2 can exploit biological vulnerabilities (e.g. host proteins) in susceptible hosts that predispose to the development of severe COVID-19. Methods: To identify host proteins that may contribute to the risk of severe COVID-19, we undertook proteome-wide genetic colocalisation tests, and polygenic (pan) and cis-Mendelian randomisation analyses leveraging publicly available protein and COVID-19 datasets. Results: Our analytic approach identified several known targets (e.g. ABO, OAS1), but also nominated new proteins such as soluble Fas (colocalisation probability >0.9, p=1 × 10-4), implicating Fas-mediated apoptosis as a potential target for COVID-19 risk. The polygenic (pan) and cis-Mendelian randomisation analyses showed consistent associations of genetically predicted ABO protein with several COVID-19 phenotypes. The ABO signal is highly pleiotropic, and a look-up of proteins associated with the ABO signal revealed that the strongest association was with soluble CD209. We demonstrated experimentally that CD209 directly interacts with the spike protein of SARS-CoV-2, suggesting a mechanism that could explain the ABO association with COVID-19. Conclusions: Our work provides a prioritised list of host targets potentially exploited by SARS-CoV-2 and is a precursor for further research on CD209 and FAS as therapeutically tractable targets for COVID-19. Funding: MAK, JSc, JH, AB, DO, MC, EMM, MG, ID were funded by Open Targets. J.Z. and T.R.G were funded by the UK Medical Research Council Integrative Epidemiology Unit (MC_UU_00011/4). JSh and GJW were funded by the Wellcome Trust Grant 206194. This research was funded in part by the Wellcome Trust [Grant 206194]. For the purpose of open access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission.


Individuals who become infected with the virus that causes COVID-19 can experience a wide variety of symptoms. These can range from no symptoms or minor symptoms to severe illness and death. Key demographic factors, such as age, gender and race, are known to affect how susceptible an individual is to infection. However, molecular factors, such as unique gene mutations and gene expression levels can also have a major impact on patient responses by affecting the levels of proteins in the body. Proteins that are too abundant or too scarce may mean the difference between dying from or surviving COVID-19. Identifying the molecular factors in a host that affect how viruses can infect individuals, evade immune defences or trigger severe illness, could provide new ways to treat patients with COVID-19. Such factors are likely to remain constant, even when the virus mutates into new strains. Hence, insights would likely apply across all virus strains, including current strains, such as alpha and delta, and any new strains that may emerge in the future. Using such a 'natural experiment' approach, Karim et al. compared the genetic profiles of over 30,000 COVID-19 patients and a million healthy individuals. Nine proteins were found to have an impact on COVID-19 infection and disease severity. Four proteins were ranked as top priorities for potential treatment targets. One protein, called CD209 (also known as DC-SIGN), is involved in how the virus enters the host cells, and had one of the strongest associations with COVID-19. Two proteins, called IL-6R and FAS, were involved in the immune response and could be responsible for the immune over-activation often seen in severe COVID-19. Finally, one protein, called OAS1, formed part of the body's innate antiviral defence system and appeared to reduce susceptibility to COVID-19. Knowing more about the proteins that influence the severity of COVID-19 opens up new ways to predict, protect and treat patients who may have severe or fatal reactions to infection. Indeed, one of the identified proteins (IL-6R) had already been targeted in recent clinical trials with some encouraging results. Considering CD209 as a potential receptor for the virus could provide another avenue for therapeutics, similar to previously successful approaches to block the virus' known interaction with a receptor protein. Ultimately, this research could supply an entirely new set of treatment options to help combat the COVID-19 pandemic.


Assuntos
COVID-19/virologia , Estudo de Associação Genômica Ampla , SARS-CoV-2/fisiologia , 2',5'-Oligoadenilato Sintetase/genética , COVID-19/genética , COVID-19/imunologia , COVID-19/fisiopatologia , Moléculas de Adesão Celular , Humanos , Lectinas Tipo C , Proteoma , Receptores de Superfície Celular , Receptores Depuradores Classe A/genética , Índice de Gravidade de Doença , Receptor fas/genética
12.
Am J Hum Genet ; 108(9): 1551-1557, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34329581

RESUMO

Clinical validity assessments of gene-disease associations underpin analysis and reporting in diagnostic genomics, and yet wide variability exists in practice, particularly in use of these assessments for virtual gene panel design and maintenance. Harmonization efforts are hampered by the lack of agreed terminology, agreed gene curation standards, and platforms that can be used to identify and resolve discrepancies at scale. We undertook a systematic comparison of the content of 80 virtual gene panels used in two healthcare systems by multiple diagnostic providers in the United Kingdom and Australia. The process was enabled by a shared curation platform, PanelApp, and resulted in the identification and review of 2,144 discordant gene ratings, demonstrating the utility of sharing structured gene-disease validity assessments and collaborative discordance resolution in establishing national and international consensus.


Assuntos
Consenso , Curadoria de Dados/normas , Doenças Genéticas Inatas/genética , Genômica/normas , Anotação de Sequência Molecular/normas , Austrália , Biomarcadores/metabolismo , Curadoria de Dados/métodos , Atenção à Saúde , Expressão Gênica , Ontologia Genética , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/patologia , Genômica/métodos , Humanos , Aplicativos Móveis/provisão & distribuição , Terminologia como Assunto , Reino Unido
13.
Nucleic Acids Res ; 49(D1): D1302-D1310, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33196847

RESUMO

The Open Targets Platform (https://www.targetvalidation.org/) provides users with a queryable knowledgebase and user interface to aid systematic target identification and prioritisation for drug discovery based upon underlying evidence. It is publicly available and the underlying code is open source. Since our last update two years ago, we have had 10 releases to maintain and continuously improve evidence for target-disease relationships from 20 different data sources. In addition, we have integrated new evidence from key datasets, including prioritised targets identified from genome-wide CRISPR knockout screens in 300 cancer models (Project Score), and GWAS/UK BioBank statistical genetic analysis evidence from the Open Targets Genetics Portal. We have evolved our evidence scoring framework to improve target identification. To aid the prioritisation of targets and inform on the potential impact of modulating a given target, we have added evaluation of post-marketing adverse drug reactions and new curated information on target tractability and safety. We have also developed the user interface and backend technologies to improve performance and usability. In this article, we describe the latest enhancements to the Platform, to address the fundamental challenge that developing effective and safe drugs is difficult and expensive.


Assuntos
Antineoplásicos/uso terapêutico , Drogas em Investigação/uso terapêutico , Bases de Conhecimento , Terapia de Alvo Molecular/métodos , Neoplasias/tratamento farmacológico , Software , Antineoplásicos/química , Bases de Dados Factuais , Conjuntos de Dados como Assunto , Descoberta de Drogas/métodos , Drogas em Investigação/química , Humanos , Internet , Neoplasias/classificação , Neoplasias/genética , Neoplasias/patologia
14.
Nucleic Acids Res ; 49(D1): D1311-D1320, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33045747

RESUMO

Open Targets Genetics (https://genetics.opentargets.org) is an open-access integrative resource that aggregates human GWAS and functional genomics data including gene expression, protein abundance, chromatin interaction and conformation data from a wide range of cell types and tissues to make robust connections between GWAS-associated loci, variants and likely causal genes. This enables systematic identification and prioritisation of likely causal variants and genes across all published trait-associated loci. In this paper, we describe the public resources we aggregate, the technology and analyses we use, and the functionality that the portal offers. Open Targets Genetics can be searched by variant, gene or study/phenotype. It offers tools that enable users to prioritise causal variants and genes at disease-associated loci and access systematic cross-disease and disease-molecular trait colocalization analysis across 92 cell types and tissues including the eQTL Catalogue. Data visualizations such as Manhattan-like plots, regional plots, credible sets overlap between studies and PheWAS plots enable users to explore GWAS signals in depth. The integrated data is made available through the web portal, for bulk download and via a GraphQL API, and the software is open source. Applications of this integrated data include identification of novel targets for drug discovery and drug repurposing.


Assuntos
Bases de Dados Genéticas , Genoma Humano , Doenças Inflamatórias Intestinais/genética , Terapia de Alvo Molecular/métodos , Locos de Características Quantitativas , Software , Cromatina/química , Cromatina/metabolismo , Conjuntos de Dados como Assunto , Descoberta de Drogas/métodos , Reposicionamento de Medicamentos/métodos , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Internet , Fenótipo , Característica Quantitativa Herdável
16.
Clin Pharmacol Ther ; 105(1): 86-91, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30406943

RESUMO

Pharmacogenomics (PGx) can be seen as a model for biomedical studies: it includes all disease areas of interest and spans in vitro studies to clinical trials, while focusing on the relationships between genes and drugs and the resulting phenotypes. This review will examine different characteristics of PGx study publications and provide examples of excellence in framing PGx questions and reporting their resulting data in a way that maximizes the knowledge that can be built on them.


Assuntos
Publicações Periódicas como Assunto , Farmacogenética/métodos , Terminologia como Assunto , Pesquisa Translacional Biomédica/métodos , Humanos , Publicações Periódicas como Assunto/tendências , Farmacogenética/tendências , Pesquisa Translacional Biomédica/tendências
18.
Hum Mutat ; 38(6): 704-715, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28271586

RESUMO

Although over 150 unique mutations affecting the coding sequence of CHM have been identified in patients with the X-linked chorioretinal disease choroideremia (CHM), no regulatory mutations have been reported, and indeed the promoter has not been defined. Here, we describe two independent families affected by CHM bearing a mutation outside the gene's coding region at position c.-98: C>A and C>T, which segregated with the disease. The male proband of family 1 was found to lack CHM mRNA and its gene product Rab escort protein 1, whereas whole-genome sequencing of an affected male in family 2 excluded the involvement of any other known retinal genes. Both mutations abrogated luciferase activity when inserted into a reporter construct, and by further employing the luciferase reporter system to assay sequences 5' to the gene, we identified the CHM promoter as the region encompassing nucleotides c.-119 to c.-76. These findings suggest that the CHM promoter region should be examined in patients with CHM who lack coding sequence mutations, and reveals, for the first time, features of the gene's regulation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Coroideremia/genética , Doenças Genéticas Ligadas ao Cromossomo X , Degeneração Retiniana/genética , Coroideremia/complicações , Coroideremia/patologia , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Mutação , Linhagem , Regiões Promotoras Genéticas/genética , Retina/metabolismo , Retina/patologia , Degeneração Retiniana/complicações , Degeneração Retiniana/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...