Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Stem Cell ; 23(2): 210-225.e6, 2018 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-30075129

RESUMO

The cellular and mechanistic bases underlying endothelial regeneration of adult large vessels have proven challenging to study. Using a reproducible in vivo aortic endothelial injury model, we characterized cellular dynamics underlying the regenerative process through a combination of multi-color lineage tracing, parabiosis, and single-cell transcriptomics. We found that regeneration is a biphasic process driven by distinct populations arising from differentiated endothelial cells. The majority of cells immediately adjacent to the injury site re-enter the cell cycle during the initial damage response, with a second phase driven by a highly proliferative subpopulation. Endothelial regeneration requires activation of stress response genes including Atf3, and aged aortas compromised in their reparative capacity express less Atf3. Deletion of Atf3 reduced endothelial proliferation and compromised the regeneration. These findings provide important insights into cellular dynamics and mechanisms that drive responses to large vessel injury.


Assuntos
Aorta/citologia , Células Endoteliais/citologia , Fator 3 Ativador da Transcrição/deficiência , Fator 3 Ativador da Transcrição/metabolismo , Animais , Aorta/lesões , Aorta/metabolismo , Proliferação de Células , Células Endoteliais/metabolismo , Cinética , Camundongos , Camundongos Endogâmicos C57BL
2.
Sci Rep ; 8(1): 5430, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29615716

RESUMO

The molecular mechanisms underlying vascular regeneration and repair are largely unknown. To gain insight into this process, we developed a method of intima denudation, characterized the progression of endothelial healing, and performed transcriptome analysis over time. Next-generation RNA sequencing (RNAseq) provided a quantitative and unbiased gene expression profile during in vivo regeneration following denudation injury. Our data indicate that shortly after injury, cells immediately adjacent to the wound mount a robust and rapid response with upregulation of genes like Jun, Fos, Myc, as well as cell adhesion genes. This was quickly followed by a wave of proliferative genes. After completion of endothelial healing a vigorous array of extracellular matrix transcripts were upregulated. Gene ontology enrichment and protein network analysis were used to identify transcriptional profiles over time. Further data mining revealed four distinct stages of regeneration: shock, proliferation, acclimation, and maturation. The transcriptional signature of those stages provides insight into the regenerative machinery responsible for arterial repair under normal physiologic conditions.


Assuntos
Artérias/fisiologia , Perfilação da Expressão Gênica , Regeneração/genética , Transcrição Gênica , Animais , Adesão Celular/genética , Ciclo Celular/genética , Proliferação de Células/genética , Endotélio Vascular/citologia , Matriz Extracelular/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Neovascularização Fisiológica/genética , Cicatrização/genética
3.
Nat Commun ; 8(1): 1620, 2017 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-29158473

RESUMO

Endothelial cells transduce mechanical forces from blood flow into intracellular signals required for vascular homeostasis. Here we show that endothelial NOTCH1 is responsive to shear stress, and is necessary for the maintenance of junctional integrity, cell elongation, and suppression of proliferation, phenotypes induced by laminar shear stress. NOTCH1 receptor localizes downstream of flow and canonical NOTCH signaling scales with the magnitude of fluid shear stress. Reduction of NOTCH1 destabilizes cellular junctions and triggers endothelial proliferation. NOTCH1 suppression results in changes in expression of genes involved in the regulation of intracellular calcium and proliferation, and preventing the increase of calcium signaling rescues the cell-cell junctional defects. Furthermore, loss of Notch1 in adult endothelium increases hypercholesterolemia-induced atherosclerosis in the descending aorta. We propose that NOTCH1 is atheroprotective and acts as a mechanosensor in adult arteries, where it integrates responses to laminar shear stress and regulates junctional integrity through modulation of calcium signaling.


Assuntos
Artérias/metabolismo , Mecanotransdução Celular , Receptor Notch1/metabolismo , Animais , Artérias/química , Cálcio/metabolismo , Células Endoteliais/química , Células Endoteliais/metabolismo , Endotélio Vascular/química , Endotélio Vascular/metabolismo , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor Notch1/genética , Estresse Mecânico
4.
J Vis Exp ; (117)2016 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-27911412

RESUMO

Percutaneous vascular interventions uniformly result in arterial denudation injuries that subsequently lead to thrombosis and restenosis. These complications can be attributed to impairments in re-endothelialization within the wound margins. Yet, the cellular and molecular mechanisms of re-endothelialization remain to be defined. While several animal models to study re-endothelialization after arterial denudation are available, few are performed in the mouse because of surgical limitations. This undermines the opportunity to exploit transgenic mouse lines and investigate the contribution of specific genes to the process of re-endothelialization. Here, we present a step-by-step protocol for creating a highly reproducible murine model of arterial denudation injury in the infrarenal abdominal aorta using external vascular clamping. Immunocytochemical staining of injured aortas for fibrinogen and ß-catenin demonstrate the exposure of a pro-thrombotic surface and the border of intact endothelium, respectively. The method presented here has the advantages of speed, excellent overall survival rate, and relative technical ease, creating a uniquely practical tool for imposing arterial denudation injury in transgenic mouse models. Using this method, investigators may elucidate the mechanisms of re-endothelialization under normal or pathological conditions.


Assuntos
Aorta Abdominal , Endotélio Vascular/lesões , Modelos Animais , Animais , Constrição , Camundongos , Camundongos Transgênicos
5.
Arterioscler Thromb Vasc Biol ; 36(11): 2203-2212, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27634833

RESUMO

OBJECTIVE: Perivascular cells, including pericytes, macrophages, smooth muscle cells, and other specialized cell types, like podocytes, participate in various aspects of vascular function. However, aside from the well-established roles of smooth muscle cells and pericytes, the contributions of other vascular-associated cells are poorly understood. Our goal was to ascertain the function of perivascular macrophages in adult tissues under nonpathological conditions. APPROACH AND RESULTS: We combined confocal microscopy, in vivo cell depletion, and in vitro assays to investigate the contribution of perivascular macrophages to vascular function. We found that resident perivascular macrophages are associated with capillaries at a frequency similar to that of pericytes. Macrophage depletion using either clodronate liposomes or antibodies unexpectedly resulted in hyperpermeability. This effect could be rescued when M2-like macrophages, but not M1-like macrophages or dendritic cells, were reconstituted in vivo, suggesting subtype-specific roles for macrophages in the regulation of vascular permeability. Furthermore, we found that permeability-promoting agents elicit motility and eventual dissociation of macrophages from the vasculature. Finally, in vitro assays showed that M2-like macrophages attenuate the phosphorylation of VE-cadherin upon exposure to permeability-promoting agents. CONCLUSIONS: This study points to a direct contribution of macrophages to vessel barrier integrity and provides evidence that heterotypic cell interactions with the endothelium, in addition to those of pericytes, control vascular permeability.


Assuntos
Capilares/metabolismo , Permeabilidade Capilar , Comunicação Celular , Células Endoteliais/metabolismo , Macrófagos Peritoneais/metabolismo , Mesentério/irrigação sanguínea , Peritônio/irrigação sanguínea , Pele/irrigação sanguínea , Animais , Antígenos CD/metabolismo , Caderinas/metabolismo , Movimento Celular , Células Cultivadas , Técnicas de Cocultura , Dextranos/metabolismo , Fluoresceína-5-Isotiocianato/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Camundongos Nus , Camundongos Transgênicos , Ovalbumina/metabolismo , Fenótipo , Fosforilação , Rodaminas/metabolismo , Fatores de Tempo , Transfecção
6.
Vascul Pharmacol ; 72: 9-15, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26093336

RESUMO

Thrombosis and restenosis are the most prevalent late complications of coronary artery stenting. Current standards of clinical care focus on prevention of smooth muscle cell proliferation by the use of drug-eluting stents able to release anti-proliferative drugs. Unfortunately, these drugs also block endothelial cell proliferation and, in this manner, prevent recovery of endothelial cell coverage. Continued lack of endothelial repair leaves the root cause of thrombosis and restenosis unchanged, creating a vicious cycle where drug-mediated prevention of restenosis simultaneously implies promotion of thrombosis. In this issue of Vascular Pharmacology, Hussner and colleagues provide in vitro evidence and a mechanistic basis for the use of atorvastatin in stents as a way to bypass this roadblock. Here we review the pathological mechanisms and therapeutic approaches to restore flow in occluded arteries. We argue that rational design of drug eluting stents should focus on specific inhibition of smooth muscle cell proliferation with concurrent stimulation of endothelial regeneration. We comment on the current poor understanding of the cellular and molecular regulation of endothelial cell proliferation in the context of a functional artery, and on the pitfalls of extrapolating from the well-studied process of neovascularization by sprouting vessel formation.


Assuntos
Artérias/patologia , Células Endoteliais/patologia , Endotélio Vascular/patologia , Regeneração/fisiologia , Úlcera/patologia , Lesões do Sistema Vascular/patologia , Cicatrização/fisiologia , Animais , Proliferação de Células/fisiologia , Humanos
7.
Cell ; 156(3): 549-62, 2014 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-24485460

RESUMO

Vascular permeability is frequently associated with inflammation and is triggered by a cohort of secreted permeability factors such as vascular endothelial growth factor (VEGF). Here, we show that the physiological vascular permeability that precedes implantation is directly controlled by progesterone receptor (PR) and is independent of VEGF. Global or endothelial-specific deletion of PR blocks physiological vascular permeability in the uterus, whereas misexpression of PR in the endothelium of other organs results in ectopic vascular leakage. Integration of an endothelial genome-wide transcriptional profile with chromatin immunoprecipitation sequencing revealed that PR induces an NR4A1 (Nur77/TR3)-dependent transcriptional program that broadly regulates vascular permeability in response to progesterone. Silencing of NR4A1 blocks PR-mediated permeability responses, indicating a direct link between PR and NR4A1. This program triggers concurrent suppression of several junctional proteins and leads to an effective, timely, and venous-specific regulation of vascular barrier function that is critical for embryo implantation.


Assuntos
Permeabilidade Capilar , Endotélio Vascular/metabolismo , Útero/metabolismo , Animais , Endométrio/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Camundongos , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética
8.
Stand Genomic Sci ; 7(3): 449-68, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24019992

RESUMO

The complete genomes of Thermus oshimai JL-2 and T. thermophilus JL-18 each consist of a circular chromosome, 2.07 Mb and 1.9 Mb, respectively, and two plasmids ranging from 0.27 Mb to 57.2 kb. Comparison of the T. thermophilus JL-18 chromosome with those from other strains of T. thermophilus revealed a high degree of synteny, whereas the megaplasmids from the same strains were highly plastic. The T. oshimai JL-2 chromosome and megaplasmids shared little or no synteny with other sequenced Thermus strains. Phylogenomic analyses using a concatenated set of conserved proteins confirmed the phylogenetic and taxonomic assignments based on 16S rRNA phylogenetics. Both chromosomes encode a complete glycolysis, tricarboxylic acid (TCA) cycle, and pentose phosphate pathway plus glucosidases, glycosidases, proteases, and peptidases, highlighting highly versatile heterotrophic capabilities. Megaplasmids of both strains contained a gene cluster encoding enzymes predicted to catalyze the sequential reduction of nitrate to nitrous oxide; however, the nitrous oxide reductase required for the terminal step in denitrification was absent, consistent with their incomplete denitrification phenotypes. A sox gene cluster was identified in both chromosomes, suggesting a mode of chemolithotrophy. In addition, nrf and psr gene clusters in T. oshmai JL-2 suggest respiratory nitrite ammonification and polysulfide reduction as possible modes of anaerobic respiration.

9.
Genome Announc ; 1(1)2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23405355

RESUMO

The strains Thermus oshimai JL-2 and Thermus thermophilus JL-18 each have a circular chromosome, 2.07 Mb and 1.9 Mb in size, respectively, and each has two plasmids ranging from 0.27 Mb to 57.2 kb. The megaplasmid of each strain contains a gene cluster for the reduction of nitrate to nitrous oxide, consistent with their incomplete denitrification phenotypes.

10.
PLoS One ; 7(5): e35964, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22574130

RESUMO

Over 100 hot spring sediment samples were collected from 28 sites in 12 areas/regions, while recording as many coincident geochemical properties as feasible (>60 analytes). PCR was used to screen samples for Korarchaeota 16S rRNA genes. Over 500 Korarchaeota 16S rRNA genes were screened by RFLP analysis and 90 were sequenced, resulting in identification of novel Korarchaeota phylotypes and exclusive geographical variants. Korarchaeota diversity was low, as in other terrestrial geothermal systems, suggesting a marine origin for Korarchaeota with subsequent niche-invasion into terrestrial systems. Korarchaeota endemism is consistent with endemism of other terrestrial thermophiles and supports the existence of dispersal barriers. Korarchaeota were found predominantly in >55°C springs at pH 4.7-8.5 at concentrations up to 6.6×10(6) 16S rRNA gene copies g(-1) wet sediment. In Yellowstone National Park (YNP), Korarchaeota were most abundant in springs with a pH range of 5.7 to 7.0. High sulfate concentrations suggest these fluids are influenced by contributions from hydrothermal vapors that may be neutralized to some extent by mixing with water from deep geothermal sources or meteoric water. In the Great Basin (GB), Korarchaeota were most abundant at spring sources of pH<7.2 with high particulate C content and high alkalinity, which are likely to be buffered by the carbonic acid system. It is therefore likely that at least two different geological mechanisms in YNP and GB springs create the neutral to mildly acidic pH that is optimal for Korarchaeota. A classification support vector machine (C-SVM) trained on single analytes, two analyte combinations, or vectors from non-metric multidimensional scaling models was able to predict springs as Korarchaeota-optimal or sub-optimal habitats with accuracies up to 95%. To our knowledge, this is the most extensive analysis of the geochemical habitat of any high-level microbial taxon and the first application of a C-SVM to microbial ecology.


Assuntos
Inteligência Artificial , Biodiversidade , Fenômenos Ecológicos e Ambientais , Fontes Termais , Korarchaeota/classificação , Filogeografia , Ecossistema , Fontes Termais/química , Concentração de Íons de Hidrogênio , Korarchaeota/genética , Temperatura , Água/química
11.
FEMS Microbiol Ecol ; 81(2): 446-54, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22443686

RESUMO

To inform hypotheses regarding the relative importance of chemolithotrophic metabolisms in geothermal environments, we calculated free energy yields of 26 chemical reactions potentially supporting chemolithotrophy in two US Great Basin hot springs, taking into account the effects of changing reactant and product activities on the Gibbs free energy as each reaction progressed. Results ranged from 1.2 × 10(-5) to 3.6 J kg(-1) spring water, or 3.7 × 10(-5) to 11.5 J s(-1) based on measured flow rates, with aerobic oxidation of CH(4) or NH4 + giving the highest average yields. Energy yields calculated without constraining pH were similar to those at constant pH except for reactions where H(+) was consumed, which often had significantly lower yields when pH was unconstrained. In contrast to the commonly used normalization of reaction chemical affinities per mole of electrons transferred, reaction energy yields for a given oxidant varied by several orders of magnitude and were more sensitive to differences in the activities of products and reactants. The high energy yield of aerobic ammonia oxidation is consistent with previous observations of significant ammonia oxidation rates and abundant ammonia-oxidizing archaea in sediments of these springs. This approach offers an additional lens through which to view the thermodynamic landscape of geothermal springs.


Assuntos
Amônia/metabolismo , Archaea/metabolismo , Crescimento Quimioautotrófico , Fontes Termais/química , Fontes Termais/microbiologia , Oxirredução , Termodinâmica , Microbiologia da Água , Wyoming
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...