Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Theor Appl Genet ; 129(9): 1657-72, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27193775

RESUMO

KEY MESSAGE: Key QTLs were identified for P efficiency in barley. Phosphorus efficiency and grain yield can be improved simultaneously in breeding. An important breeding goal for many crop species is improved phosphorus (P) efficiency. As in many other crops, selection for P efficient barley varieties has been slow because of inconsistent definitions of P efficiency and unknown genetic controls of P efficiency. We used two criteria to assess P efficiency in a doubled haploid Commander/Fleet population: P responsiveness (estimated as the deviation from the regression of yield with added P against yield with no added P treatment) and PUE (relative yield). Phosphorus responsiveness, PUE and grain yield were phenotyped at 0 and 30 kg P/ha in five environments. Lines consistently responsive to 30 kg P/ha across environments had the highest yield at the two P rates, and P responsiveness showed significantly higher broad sense heritability than PUE in the materials we studied. Genotyping of the population was subjected to a 9,000 single nucleotide polymorphism array and quantitative trait loci (QTLs) for P responsiveness were mapped with yield at 30 kg P/ha, which are common QTLs for yield when P was not limiting growth. The largest QTL for P responsiveness was mapped to 7HL in 2 years. PUE varied from 31 to 124 % across environments and one of the QTLs for PUE was mapped with yield at 0 kg P/ha. Our results demonstrate P responsiveness and grain yield can be improved simultaneously under high-input agricultural systems, but breeding for high PUE varieties may need to explore landrace or wild barley germplasm for low P tolerant alleles.


Assuntos
Mapeamento Cromossômico , Hordeum/genética , Fósforo/metabolismo , Locos de Características Quantitativas , Meio Ambiente , Genótipo , Técnicas de Genotipagem , Haploidia , Sequenciamento de Nucleotídeos em Larga Escala , Hordeum/metabolismo , Fenótipo , Polimorfismo de Nucleotídeo Único
3.
New Phytol ; 201(1): 131-143, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24033183

RESUMO

High expression of zinc (Zn)-regulated, iron-regulated transporter-like protein (ZIP) genes increases root Zn uptake in dicots, leading to high accumulation of Zn in shoots. However, none of the ZIP genes tested previously in monocots could enhance shoot Zn accumulation. In this report, barley (Hordeum vulgare) HvZIP7 was investigated for its functions in Zn transport. The functions of HvZIP7 in planta were studied using in situ hybridization and transient analysis of subcellular localization with a green fluorescent protein (GFP) reporter. Transgenic barley lines overexpressing HvZIP7 were also generated to further understand the functions of HvZIP7 in metal transport. HvZIP7 is strongly induced by Zn deficiency, primarily in vascular tissues of roots and leaves, and its protein was localized in the plasma membrane. These properties are similar to its closely related homologs in dicots. Overexpression of HvZIP7 in barley plants increased Zn uptake when moderately high concentrations of Zn were supplied. Significantly, there was a specific enhancement of shoot Zn accumulation, with no measurable increase in iron (Fe), manganese (Mn), copper (Cu) or cadmium (Cd). HvZIP7 displays characteristics of low-affinity Zn transport. The unique function of HvZIP7 provides new insights into the role of ZIP genes in Zn homeostasis in monocots, and offers opportunities to develop Zn biofortification strategies in cereals.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte de Cátions/genética , Expressão Gênica , Genes de Plantas , Hordeum/genética , Proteínas de Plantas/genética , Zinco/metabolismo , Transporte Biológico , Proteínas de Transporte/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Membrana Celular/metabolismo , Homeostase , Hordeum/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo
4.
J Exp Bot ; 63(10): 3853-67, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22442423

RESUMO

Success in breeding crops for yield and other quantitative traits depends on the use of methods to evaluate genotypes accurately under field conditions. Although many screening criteria have been suggested to distinguish between genotypes for their salt tolerance under controlled environmental conditions, there is a need to test these criteria in the field. In this study, the salt tolerance, ion concentrations, and accumulation of compatible solutes of genotypes of barley with a range of putative salt tolerance were investigated using three growing conditions (hydroponics, soil in pots, and natural saline field). Initially, 60 genotypes of barley were screened for their salt tolerance and uptake of Na(+), Cl(-), and K(+) at 150 mM NaCl and, based on this, a subset of 15 genotypes was selected for testing in pots and in the field. Expression of salt tolerance in saline solution culture was not a reliable indicator of the differences in salt tolerance between barley plants that were evident in saline soil-based comparisons. Significant correlations were observed in the rankings of genotypes on the basis of their grain yield production at a moderately saline field site and their relative shoot growth in pots at EC(e) 7.2 [Spearman's rank correlation (rs)=0.79] and EC(e) 15.3 (rs=0.82) and the crucial parameter of leaf Na(+) (rs=0.72) and Cl(-) (rs=0.82) concentrations at EC(e) 7.2 dS m(-1). This work has established screening procedures that correlated well with grain yield at sites with moderate levels of soil salinity. This study also showed that both salt exclusion and osmotic tolerance are involved in salt tolerance and that the relative importance of these traits may differ with the severity of the salt stress. In soil, ion exclusion tended to be more important at low to moderate levels of stress but osmotic stress became more important at higher stress levels. Salt exclusion coupled with a synthesis of organic solutes were shown to be important components of salt tolerance in the tolerant genotypes and further field tests of these plants under stress conditions will help to verify their potential utility in crop-improvement programmes.


Assuntos
Cruzamento/métodos , Hordeum/fisiologia , Tolerância ao Sal , Cloreto de Sódio/metabolismo , Mudança Climática , Ecossistema , Hordeum/genética , Hordeum/crescimento & desenvolvimento , Hidroponia , Solo/análise
5.
J Exp Bot ; 62(6): 2189-203, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21273334

RESUMO

Soil salinity affects large areas of the world's cultivated land, causing significant reductions in crop yield. Despite the fact that most plants accumulate both sodium (Na(+)) and chloride (Cl(-)) ions in high concentrations in their shoot tissues when grown in saline soils, most research on salt tolerance in annual plants has focused on the toxic effects of Na(+) accumulation. It has previously been suggested that Cl(-) toxicity may also be an important cause of growth reduction in barley plants. Here, the extent to which specific ion toxicities of Na(+) and Cl(-) reduce the growth of barley grown in saline soils is shown under varying salinity treatments using four barley genotypes differing in their salt tolerance in solution and soil-based systems. High Na(+), Cl(-), and NaCl separately reduced the growth of barley, however, the reductions in growth and photosynthesis were greatest under NaCl stress and were mainly additive of the effects of Na(+) and Cl(-) stress. The results demonstrated that Na(+) and Cl(-) exclusion among barley genotypes are independent mechanisms and different genotypes expressed different combinations of the two mechanisms. High concentrations of Na(+) reduced K(+) and Ca(2+) uptake and reduced photosynthesis mainly by reducing stomatal conductance. By comparison, high Cl(-) concentration reduced photosynthetic capacity due to non-stomatal effects: there was chlorophyll degradation, and a reduction in the actual quantum yield of PSII electron transport which was associated with both photochemical quenching and the efficiency of excitation energy capture. The results also showed that there are fundamental differences in salinity responses between soil and solution culture, and that the importance of the different mechanisms of salt damage varies according to the system under which the plants were grown.


Assuntos
Cloretos/toxicidade , Hordeum/crescimento & desenvolvimento , Salinidade , Sódio/toxicidade , Estresse Fisiológico , Biomassa , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Genótipo , Hordeum/genética , Hordeum/metabolismo , Hidroponia , Brotos de Planta/metabolismo , Água/metabolismo
6.
J Exp Bot ; 61(15): 4449-59, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20713463

RESUMO

Despite the fact that most plants accumulate both sodium (Na(+)) and chloride (Cl(-)) ions to high concentration in their shoot tissues when grown in saline soils, most research on salt tolerance in annual plants has focused on the toxic effects of Na(+) accumulation. There have also been some recent concerns about the ability of hydroponic systems to predict the responses of plants to salinity in soil. To address these two issues, an experiment was conducted to compare the responses to Na(+) and to Cl(-) separately in comparison with the response to NaCl in a soil-based system using two varieties of faba bean (Vicia faba), that differed in salinity tolerance. The variety Nura is a salt-sensitive variety that accumulates Na(+) and Cl(-) to high concentrations while the line 1487/7 is salt tolerant which accumulates lower concentrations of Na(+) and Cl(-). Soils were prepared which were treated with Na(+) or Cl(-) by using a combination of different Na(+) salts and Cl(-) salts, respectively, or with NaCl. While this method produced Na(+)-dominant and Cl(-)-dominant soils, it unavoidably led to changes in the availability of other anions and cations, but tissue analysis of the plants did not indicate any nutritional deficiencies or toxicities other than those targeted by the salt treatments. The growth, water use, ionic composition, photosynthesis, and chlorophyll fluorescence were measured. Both high Na(+) and high Cl(-) reduced growth of faba bean but plants were more sensitive to Cl(-) than to Na(+). The reductions in growth and photosynthesis were greater under NaCl stress and the effect was mainly additive. An important difference to previous hydroponic studies was that increasing the concentrations of NaCl in the soil increased the concentration of Cl(-) more than the concentration of Na(+). The data showed that salinity caused by high concentrations of NaCl can reduce growth by the accumulation of high concentrations of both Na(+) and Cl(-) simultaneously, but the effects of the two ions may differ. High Cl(-) concentration reduces the photosynthetic capacity and quantum yield due to chlorophyll degradation which may result from a structural impact of high Cl(-) concentration on PSII. High Na(+) interferes with K(+) and Ca(2+) nutrition and disturbs efficient stomatal regulation which results in a depression of photosynthesis and growth. These results suggest that the importance of Cl(-) toxicity as a cause of reductions in growth and yield under salinity stress may have been underestimated.


Assuntos
Cloretos/farmacologia , Salinidade , Sódio/farmacologia , Solo/química , Estresse Fisiológico/efeitos dos fármacos , Vicia faba/efeitos dos fármacos , Vicia faba/crescimento & desenvolvimento , Biomassa , Cloretos/metabolismo , Clorofila/metabolismo , Condutividade Elétrica , Fluorescência , Gases/metabolismo , Genótipo , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Íons , Osmose/efeitos dos fármacos , Folhas de Planta/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Sódio/metabolismo , Soluções , Vicia faba/anatomia & histologia , Vicia faba/genética , Água/metabolismo
7.
Plant Cell Environ ; 30(11): 1486-98, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17897418

RESUMO

Wheat is the most important crop grown on many of world's saline and sodic soils, and breeding for improved salinity tolerance (ST) is the only feasible way of improving yield and yield stability under these conditions. There are a number of possible mechanisms by which cereals can tolerate high levels of salinity, but these can be considered in terms of Na(+) exclusion and tissue tolerance. Na(+) exclusion has been the focus of much of the recent work in wheat, but with relatively little progress to date in developing high-yielding, salt-tolerant genotypes. Using a diverse collection of bread wheat germplasm, the present study was conducted to assess the value of tissue Na(+) concentration as a criterion for ST, and to determine whether ST differs with growth stage. Two experiments were conducted, the first with 38 genotypes and the second with 21 genotypes. A wide range of Na(+) concentrations within the roots and shoots as well as in ST were observed in both experiments. However, maintenance of growth and yield when grown with 100 mM NaCl was not correlated with the ability of a genotype to exclude Na(+) either from an individual leaf blade or from the whole shoot. The K(+) : Na(+) ratio also showed a wide range among the genotypes, but it did not explain the variation in ST among the genotypes. The results suggested that Na(+) exclusion and tissue tolerance varied independently, and there was no significant relationship between Na(+) exclusion and ST in bread wheat. Consequently, similar levels of ST may be achieved through different combinations of exclusion and tissue tolerance. Breeding for improved ST in bread wheat needs to select for traits related to both exclusion and tissue tolerance.


Assuntos
Cloreto de Sódio/farmacologia , Sódio/análise , Triticum/química , Biomassa , Genótipo , Raízes de Plantas/química , Brotos de Planta/química , Triticum/efeitos dos fármacos , Triticum/genética
8.
Funct Plant Biol ; 34(3): 189-203, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32689345

RESUMO

Agronomic and physiological traits associated with drought adaptation were assessed within the Seri/Babax recombinant inbred line population, which was derived from parents similar in height and maturity but divergent in their sensitivity to drought. Field trials under different water regimes were conducted over 3 years in Mexico and under rainfed conditions in Australia. Under drought, canopy temperature (CT) was the single-most drought-adaptive trait contributing to a higher performance (r2 = 0.74, P < 0.0001), highly heritable (h2 = 0.65, P < 0.0001) and consistently associated with yield phenotypically (r = -0.75, P < 0.0001) and genetically [R (g) = -0.95, P < 0.0001]. CT epitomises a mechanism of dehydration avoidance expressed throughout the cycle and across latitudes, which can be utilised as a selection criteria to identify high-yielding wheat genotypes or as an important predictor of yield performance under drought. Early response under drought, suggested by a high association of CT with estimates of biomass at booting (r = -0.44, P < 0.0001), leaf chlorophyll (r = -0.22 P < 0.0001) and plant height (r = -0.64, P < 0.0001), contrast with the small relationships with anthesis and maturity (averaged, r = -0.10, P < 0.0001), and with osmotic potential (r = -0.20, P < 0.0001). Results suggest that the ability to extract water from the soil under increasing soil water deficit is a major attribute of drought adaptation. The genetic variation and transgressive segregation suggest further genomic and transcriptomic studies for unravelling the complex relationship between drought adaptation and performance under drought.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...