Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(10): 12135-12145, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38496959

RESUMO

Within the front end of the nuclear fuel cycle, many processes impart forensic signatures. Oxygen-stable isotopes (δ18O values) of uranium-bearing materials have been theorized to provide the processing and geolocational signatures of interdicted materials. However, this signature has been minimally utilized due to a limited understanding of how oxygen isotopes are influenced during uranium processing. This study explores oxygen isotope exchange and fractionation between magnesium diuranate (MDU), ammonium diuranate (ADU), and uranyl fluoride (UO2F2) with steam (water vapor) during their reduction to UOx. The MDU was precipitated from two water sources, one enriched and one depleted in 18O. The UO2F2 was precipitated from a single water source and either directly reduced or converted to ADU prior to reduction. All MDU, ADU, and UO2F2 were reduced to UOx in a 10% hydrogen/90% nitrogen atmosphere that was dry or included steam. Powder X-ray diffraction (p-XRD) was used to verify the composition of materials after reduction as mixtures of primarily U3O8, U4O9, and UO2 with trace magnesium and fluorine phases in UOx from MDU and UO2F2, respectively. The bulk oxygen isotope composition of UOx from MDU was analyzed using fluorination to remove the lattice-bound oxygen, and then O2 was subsequently analyzed with isotope ratio mass spectrometry (IRMS). The oxygen isotope compositions of the ADU, UO2F2, and the resulting UOx were analyzed by large geometry secondary ion mass spectrometry (LG-SIMS). When reduced with steam, the MDU, ADU, and UO2F2 experienced significant oxygen isotope exchange, and the resulting δ18O values of UOx approached the values of the steam. When reduced without steam, the δ18O values of converted ADU, U3O8, and UOx products remained similar to those of the UO2F2 starting material. LG-SIMS isotope mapping of F impurity abundances and distributions showed that direct steam-assisted reduction from UO2F2 significantly removed F impurities while dry reduction from UO2F2 led to the formation of UOx that was enhanced in F impurities. In addition, when UO2F2 was processed via precipitation to ADU and calcination to U3O8, F impurities were largely removed, and reductions to UOx with and without steam each had low F impurities. Overall, these findings show promise for combining multiple signatures to predict the process history during the conversion of uranium ore concentrates to nuclear fuel.

2.
ACS Omega ; 8(50): 48336-48343, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38144047

RESUMO

This study presents in situ observations of studtite (UO2O2(H2O)2·2H2O) crystal growth utilizing liquid phase transmission electron microscopy (LP-TEM). Studtite was precipitated from a uranyl nitrate hexahydrate solution using hydrogen peroxide formed by the radiolysis of water in the TEM electron beam. The hydrogen peroxide (H2O2) concentration, directly controlled by the electron beam current, was varied to create local environments of low and high concentrations to compare the impact of the supersaturation ratio on the nucleation and growth mechanisms of studtite particles. The subsequent growth mechanisms were observed in real time by TEM and scanning TEM imaging. After the initial precipitation reaction, a post-mortem TEM analysis was performed on the samples to obtain high-resolution TEM images and selected area electron diffraction patterns to investigate crystallinity as well as energy-dispersive X-ray spectroscopy spectra to ensure that studtite was produced. The results reveal that studtite particles form through various mechanisms based on the concentration ratio of uranyl to H2O2 and that studtite is initially produced through an amorphous intermediary prior to formation of the crystalline material commonly reported in the literature.

3.
ACS Omega ; 8(19): 16896-16906, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37214678

RESUMO

The surface morphology characteristics of postenrichment deconversion products in the nuclear fuel cycle are important for producing nuclear fuel pellets. They also provide the first opportunity for a microstructural signature after conversion to gaseous uranium hexafluoride (UF6). This work synthesizes uranium oxides from uranyl fluoride (UO2F2) starting solutions by the wet ammonium diuranate route and a modification of the dry route. Products are reduced under a nitrogen/hydrogen atmosphere, with and without water vapor in the reducing environment. The crystal structures of the starting materials and resulting uranium oxides are characterized by powder X-ray diffraction. Scanning electron microscopy (SEM) and focused ion beam SEM with energy-dispersive X-ray spectroscopy (EDX) are used to investigate microstructural properties and quantify fluorine impurity concentrations. Heterogeneous distributions of fluorine with unique morphology characteristics were identified by backscatter electron imaging and EDX; these regions had elevated concentrations of fluorine impurities relating to the incomplete reduction of UO2F2 to UO2 and may provide a novel nuclear forensics morphology signature for nuclear fuel and U metal precursors.

4.
ACS Omega ; 7(4): 3462-3469, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35128255

RESUMO

The incorporation of oxygen isotopes from water into uranium oxides during industrial processing presents a pathway for determining a material's geographical origin. This study is founded on the hypothesis that oxygen isotopes from atmospheric water vapor will exchange with isotopes of oxygen in solid uranium oxides during thermal processing or calcination. Using a commonly encountered oxide, U3O8, the exchange kinetics and equilibrium fractionation with water vapor (in a concentration range of 50-55% relative humidity) were investigated using processing temperatures of 400, 600, and 800 °C. In an atmosphere containing only water vapor diluted in N2, oxygen isotope equilibration in U3O8 occurred within 12 h at 400 °C and within 2 h at 600 and 800 °C. Fractionation factors (1000lnα, U3O8-H2O) between the water and oxide were -12.1, -11.0, and -8.0 at 400, 600, and 800 °C, respectively. With both humidity and O2 present in the calcining atmosphere, isotopic equilibration is attained within 2 h at and above 400 °C. In this mixed atmosphere, which was designed to emulate Earth's troposphere, isotopes are incorporated preferentially from water vapor at 400 °C and from O2 at 600 and 800 °C. Rapid and temperature/species-dependent isotope exchange also elucidated the impact of retrograde exchange in humid air, showing a shift from O2-dependent to H2O-dependent fractionation as U3O8 cooled from 800 °C. These results confirm that uranium oxides inherit oxygen isotopes from humidity during thermal processing, illuminating an important mechanism in the formation of this forensic signature.

5.
ACS Omega ; 6(45): 30856-30864, 2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34805714

RESUMO

Oxygen stable isotopes in uranium oxides processed through the nuclear fuel cycle may have the potential to provide information about a material's origin and processing history. However, a more thorough understanding of the fractionating processes governing the formation of signatures in real-world samples is still needed. In this study, laboratory synthesis of uranium oxides modeled after industrial nuclear fuel fabrication was performed to follow the isotope fractionation during thermal decomposition and reduction of ammonium diuranate (ADU). Synthesis of ADU occurred using a gaseous NH3 route, followed by thermal decomposition in a dry nitrogen atmosphere at 400, 600, and 800 °C. The kinetic impact of heating ramp rates on isotope effects was explored by ramping to each decomposition temperature at 2, 20, and 200 °C min-1. In addition, ADU was reduced using direct (ramped to 600 °C in a hydrogen atmosphere) and indirect (thermally decomposed to U3O8 at 600 °C, then exposed to a hydrogen atmosphere) routes. The bulk oxygen isotope composition of ADU (δ18O = -16 ± 1‰) was very closely related to precipitation water (δ18O = -15.6‰). The solid products of thermal decomposition using ramp rates of 2 and 20 °C min-1 had statistically indistinguishable oxygen isotope compositions at each decomposition temperature, with increasing δ18O values in the transition from ADU to UO3 at 400 °C (δ18OUO3 - δ18OADU = 12.3‰) and the transition from UO3 to U3O8 at 600 °C (δ18OU3O8 - δ18OUO3 = 2.8‰). An enrichment of 18O attributable to water volatilization was observed in the low temperature (400 °C) product of thermal decomposition using a 200 °C min-1 ramp rate (δ18OUO3 - δ18OADU = 9.2‰). Above 400 °C, no additional fractionation was observed as UO3 decomposed to U3O8 with the rapid heating rate. Indirect reduction of ADU produced UO2 with a δ18O value 19.1‰ greater than the precipitate and 4.0‰ greater than the intermediate U3O8. Direct reduction of ADU at 600 °C in a hydrogen atmosphere resulted in the production of U4O9 with a δ18O value 17.1‰ greater than the precipitate. Except when a 200 °C min-1 ramp rate is employed, the results of both thermal decomposition and reduction show a consistent preferential enrichment of 18O as oxygen is removed from the original precipitate. Hence, the calcination and reduction reactions leading to the production of UO2 will yield unique oxygen isotope fractionations based on process parameters including heating rate and decomposition temperature.

6.
ACS Omega ; 6(28): 18426-18433, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34308073

RESUMO

The speciation and morphological changes of α-U3O8 following aging under diel cycling temperature and relative humidity (RH) have been examined. This work advances the knowledge of U-oxide hydration as a result of synthetic route and environmental conditions, ultimately giving novel insight into nuclear material provenance. α-U3O8 was synthesized via the washed uranyl peroxide (UO4) and ammonium uranyl carbonate (AUC) synthetic routes to produce unaged starting materials with different morphologies. α-U3O8 from UO4 is comprised of subrounded particles, while α-U3O8 from AUC contains blocky, porous particles approximately an order of magnitude larger than particles from UO4. For aging, a humidity chamber was programmed for continuous daily cycles of 12 "high" hours of 45 °C and 90% RH, and 12 "low" hours of 25 °C and 20% RH. Samples were analyzed at varying intervals of 14, 24, 36, 43, and 54 days. At each aging interval, crystallographic changes were measured via powder X-ray diffraction coupled with whole pattern fitting for quantitative analysis. Morphologic effects were studied via scanning electron microscopy and 12-way classification via machine learning. While all samples were found to have distinguishing morphologic characteristics (93.2% classification accuracy), α-U3O8 from UO4 had more apparent change with increasing aging time. Nonetheless, α-U3O8 from AUC was found to hydrate more quickly than α-U3O8 from UO4, which can likely be attributed to its larger surface area and porous starting material morphology.

7.
ACS Omega ; 6(12): 8605-8615, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33817521

RESUMO

The hydration and morphological effects of amorphous (A)-UO3 following storage under varying temperature and relative humidity have been investigated. This study provides valuable insight into U-oxide speciation following aging, the U-oxide quantitative morphological data set, and, overall, the characterization of nuclear material provenance. A-UO3 was synthesized via the washed uranyl peroxide synthetic route and aged based on a 3-factor circumscribed central composite design of experiment. Target aging times include 2.57, 7.00, 14.0, 21.0, and 25.4 days, temperatures of 5.51, 15.0, 30.0, 45.0, and 54.5 °C, and relative humidities of 14.2, 30.0, 55.0, 80.0, and 95.8% were examined. Following aging, crystallographic changes were quantified via powder X-ray diffraction and an internal standard Rietveld refinement method was used to confirm the hydration of A-UO3 to crystalline schoepite phases. The particle morphology from scanning electron microscopy images was quantified using both the Morphological Analysis of MAterials software and machine learning. Results from the machine learning were processed via agglomerative hierarchical clustering analysis to distinguish trends in morphological attributes from the aging study. Significantly hydrated samples were found to have a much larger, plate-like morphology in comparison to the unaged controls. Predictive modeling via a response surface methodology determined that while aging time, temperature, and relative humidity all have a quantifiable effect on A-UO3 crystallographic and morphological changes, relative humidity has the most significant impact.

8.
Anal Chem ; 91(15): 10081-10087, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31248250

RESUMO

The morphological effect of impurities on α-U3O8 has been investigated. This study provides the first evidence that the presence of impurities can alter nuclear material morphology, and these changes can be quantified to aid in revealing processing history. Four elements: Ca, Mg, V, and Zr were implemented in the uranyl peroxide synthesis route and studied individually within the α-U3O8. Six total replicates were synthesized, and replicates 1-3 were filtered and washed with Millipore water (18.2 MΩ) to remove any residual nitrates. Replicates 4-6 were filtered but not washed to determine the amount of impurities removed during washing. Inductively coupled plasma mass spectrometry (ICP-MS) was employed at key points during the synthesis to quantify incorporation of the impurity. Each sample was characterized using powder X-ray diffraction (p-XRD), high-resolution scanning electron microscopy (HRSEM), and SEM with energy dispersive X-ray spectroscopy (SEM-EDS). p-XRD was utilized to evaluate any crystallographic changes due to the impurities; HRSEM imagery was analyzed with Morphological Analysis for MAterials (MAMA) software and machine learning classification for quantification of the morphology; and SEM-EDS was utilized to locate the impurity within the α-U3O8. All samples were found to be quantifiably distinguishable, further demonstrating the utility of quantitative morphology as a signature for the processing history of nuclear material.

9.
Talanta ; 176: 284-292, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28917753

RESUMO

The analytical techniques typically utilized in a nuclear forensic investigation often provide limited information regarding the process history and production conditions of interdicted nuclear material. In this study, scanning electron microscopy (SEM) analysis of the surface morphology of amorphous-UO3 samples calcined at 250, 300, 350, 400, and 450°C from uranyl peroxide was performed to determine if the morphology was indicative of the synthesis route and thermal history for the samples. Thermogravimetic analysis-mass spectrometry (TGA-MS) and differential scanning calorimetry (DSC) were used to correlate transitions in the calcined material to morphological transformations. The high-resolution SEM images were processed using the Morphological Analysis for Material Attribution (MAMA) software. Morphological attributes, particle area and circularity, indicated significant trends as a result of calcination temperature. The quantitative morphological analysis was able to track the process of particle fragmentation and subsequent sintering as calcination temperature was increased. At the 90% confidence interval, with 1000 segmented particles, the use of Kolmogorov-Smirnov statistical comparisons allowed discernment between all calcination temperatures for the uranyl peroxide route.

10.
Anal Chem ; 89(5): 3177-3183, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28264570

RESUMO

Morphological changes in U3O8 based on calcination temperature have been quantified enabling a morphological feature to serve as a signature of processing history in nuclear forensics. Five separate calcination temperatures were used to synthesize α-U3O8, and each sample was characterized using powder X-ray diffraction (p-XRD) and scanning electron microscopy (SEM). The p-XRD spectra were used to evaluate the purity of the synthesized U-oxide; the morphological analysis for materials (MAMA) software was utilized to quantitatively characterize the particle shape and size as indicated by the SEM images. Analysis comparing the particle attributes, such as particle area at each of the temperatures, was completed using the Kolmogorov-Smirnov two sample test (K-S test). These results illustrate a distinct statistical difference between each calcination temperature. To provide a framework for forensic analysis of an unknown sample, the sample distributions at each temperature were compared to randomly selected distributions (100, 250, 500, and 750 particles) from each synthesized temperature to determine if they were statistically different. It was found that 750 particles were required to differentiate between all of the synthesized temperatures with a confidence interval of 99.0%. Results from this study provide the first quantitative morphological study of U-oxides, and reveals the potential strength of morphological particle analysis in nuclear forensics by providing a framework for a more rapid characterization of interdicted uranium oxide samples.

11.
Anal Chem ; 88(5): 2614-21, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26823002

RESUMO

Electrospray ionization-mass spectrometry (ESI-MS) was tested for its use in monitoring spent nuclear fuel (SNF) constituents including U, Pu, dibutyl phosphate (DBP), and tributyl phosphate (TBP). Both positive and negative ion modes were used to evaluate the speciation of U and Pu with TBP and DBP. Furthermore, apparent stability constants were determined for U complexed to TBP and DBP. In positive ion mode, TBP produced a strong signal with and without complexation to U or Pu, but, in negative ion mode, no TBP, U-TBP, or Pu-TBP complexes were observed. Apparent stability constants were determined for [UO2(NO3)2(TBP)2], [UO2(NO3)2(H2O)(TBP)2], and [UO2(NO3)2(TBP)3]. In contrast DBP, U-DBP, and Pu-DBP complexes were observed in both positive and negative ion modes. Apparent stability constants were determined for the species [UO2(DBP)], [UO2(DBP)3], and [UO2(DBP)4]. Analyzing mixtures of U or Pu with TBP and DBP yielded the formation of ternary complexes whose stoichiometry was directly related to the ratio of TBP to DBP. The ESI-MS protocols used in this study will further demonstrate the utility of ESI-MS and its applicability to process control monitoring in SNF reprocessing facilities.

12.
Anal Chem ; 86(2): 1023-9, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24350789

RESUMO

Electrospray ionization-mass spectrometry (ESI-MS) shows great promise as a rapid method to identify metal-ligand complexes in solution. However, its application for quantitative determination of the distribution of species present in complicated equilibria is still in its infancy, and a direct correlation between ions observed in the gas phase and species expected in solution must be made with caution. The present work focuses on a seemingly simple system; the complexation of lanthanide cations with the acetate ligand. Using a high resolution quadrupole time-of-flight mass spectrometer, ions created by electrospray of solutions containing trivalent neodymium and acetate were identified. The gas phase distribution of species was compared to the solution phase speciation predicted using thermodynamic complexation constants. Apparent gas phase speciation diagrams were constructed as a function of solution conditions and fragmentation potential. Despite the expected variability of metal-ligand complexes as solution conditions change, the observed gas phase speciation was independent of the metal to ligand ratio but dependent on the operating conditions of the ESI-MS.

13.
Photochem Photobiol ; 86(6): 1327-33, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20923439

RESUMO

Quinones are known producers of reactive oxygen species (ROS) that may be toxic in natural aquatic environments. In this study, the effects of parent quinones and their photodegradation products on bacterial growth were determined, and photochemical ROS formation rates were measured. Using (3)H-leucine incorporation to measure growth of the bacterium Pseudomonas aeruginosa and natural seawater bacterioplankton, growth inhibition was observed when samples were exposed to dichlone, chloranil and sodium anthraquinone-2-sulfonate (AQ2S). For seawater, compared with other quinones tested, dichlone showed the greatest toxicity in the dark, and AQ2S toxicity was greatest during simultaneous exposure to sunlight. Photodegraded chloranil and dichlone showed decreased toxicity compared with nonirradiated samples. For P. aeruginosa, AQ2S and its photodegradation products showed the greatest toxicity during simultaneous exposure to sunlight. Chloranil photodegradation products showed reduced toxicity compared with the parent compound during simultaneous exposure to sunlight. Dichlone was the only compound to show any toxicity to P. aeruginosa in the dark, and its photodegradation products were more toxic than the parent compound. Based on the results of dark and light controlled experiments measuring bacterial growth and estimated ROS production rates, ROS alone does not account for relative differences in toxicity between these quinones.


Assuntos
Bactérias/efeitos dos fármacos , Quinonas/toxicidade , Antraquinonas/efeitos da radiação , Antraquinonas/toxicidade , Bactérias/crescimento & desenvolvimento , Bactérias/efeitos da radiação , Cloranila/efeitos da radiação , Cloranila/toxicidade , Naftoquinonas/efeitos da radiação , Naftoquinonas/toxicidade , Processos Fotoquímicos , Fotólise , Plâncton/efeitos dos fármacos , Plâncton/crescimento & desenvolvimento , Plâncton/efeitos da radiação , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/efeitos da radiação , Quinonas/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Água do Mar/microbiologia , Luz Solar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...