Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Biomech (Bristol, Avon) ; 80: 105144, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32829235

RESUMO

BACKGROUND: Forearm fracture risk can be estimated via factor-of-risk: the ratio of applied impact force to forearm fracture load. Simple techniques are available for estimating impact force associated with a fall; estimating forearm fracture load is more challenging. Our aim was to assess whether failure load estimates of sections of the distal radius (acquired using High-Resolution peripheral Quantitative Computed Tomography and finite element modeling) offer accurate and precise estimates of forearm fracture load. METHODS: We scanned a section of the distal radius of 19 cadaveric forearms (female, mean age 83.7, SD 8.3), and 34 women (75.0, 7.7). Sections were converted to finite element models and failure loads were acquired for different failure criteria. We assessed forearm fracture load using experimental testing simulating a fall on the outstretched hand. We used linear regression to derive relationships between ex vivo forearm fracture load and finite element derived distal radius failure load. We used derived regression coefficients to estimate forearm fracture load, and assessed explained variance and prediction error. We used root-mean-squared coefficients of variation to assess in vivo precision errors of estimated forearm fracture load. FINDINGS: Failure load estimates of sections of the distal radius, used in conjunction with derived regression coefficients, explained 89-90% of the variance in experimentally-measured forearm fracture load with prediction errors <6.8% and precision errors <5.0%. INTERPRETATION: Failure load estimates of distal radius sections can reliably estimate forearm fracture load experienced during a fall. Forearm fracture load estimates can be used to improve factor-of-risk predictions for forearm fracture.


Assuntos
Traumatismos do Antebraço/fisiopatologia , Fraturas Ósseas/fisiopatologia , Rádio (Anatomia)/fisiopatologia , Idoso , Idoso de 80 Anos ou mais , Densidade Óssea , Feminino , Análise de Elementos Finitos , Traumatismos do Antebraço/diagnóstico por imagem , Fraturas Ósseas/diagnóstico por imagem , Humanos , Rádio (Anatomia)/diagnóstico por imagem , Rádio (Anatomia)/lesões , Tomografia Computadorizada por Raios X , Suporte de Carga
2.
J Orthop Res ; 38(8): 1688-1692, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31989687

RESUMO

Off-axis loading associated with a fall onto the outstretched hand has been hypothesized to induce distal radius failure at lower magnitudes than axially directed loading commonly used in biomechanical models for estimating fracture risk. However, this hypothesis has not been tested with side-to-side experimental testing. The objective of this study was to compare distal radius failure loads between forearm pairs experimentally tested in an axial or off-axis loading configuration. We acquired 18 pairs of cadaveric forearms from 18 female donors (mean age (standard deviation): 84.4 (7.9) years). Each forearm pair was tested to failure using either an axial compression test (vertical orientation with 0° dorsal inclination, 3°-6° radial inclination) or an off-axis test corresponding to the hand position during a fall (15° dorsal inclination, 3°-6° radial inclination). Failure testing was performed at 3 mm/s onto the palm of the hand until fracture occurred. Of the 18 pairs, 11 sustained a distal radius fracture. We compared failure loads between the two groups using a paired t test. Results indicated that failure load under off-axis loading was 29% lower than failure load under axial compressive loading (mean difference: -0.31 kN; 95% confidence interval: -0.47 to -0.16 kN, P = .001). In conclusion, off-axis loading associated with a fall onto the outstretched hand resulted in a 29% lower failure load. Integrating an off-axis loading configuration into current biomechanical models of distal radius bone strength may prevent overestimating of failure load and may offer a clinically relevant option to estimate distal radius fracture risk and monitor therapy efficacy.


Assuntos
Rádio (Anatomia)/fisiologia , Traumatismos do Punho/etiologia , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Suporte de Carga
3.
J Vis Exp ; (141)2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30531724

RESUMO

We demonstrate interferometric scattering (iSCAT) microscopy, a method capable of detecting single unlabeled proteins secreted from individual living cells in real time. In this protocol, we cover the fundamental steps to realize an iSCAT microscope and complement it with additional imaging channels to monitor the viability of a cell under study. Following this, we use the method for real-time detection of single proteins as they are secreted from a living cell which we demonstrate with an immortalized B-cell line (Laz388). Necessary steps concerning the preparation of microscope and sample as well as the analysis of the recorded data are discussed. The video protocol demonstrates that iSCAT microscopy offers a straightforward method to study secretion at the single-molecule level.


Assuntos
Linfócitos B/química , Rastreamento de Células/métodos , Imagem Molecular/métodos , Proteínas/análise , Linfócitos B/metabolismo , Linhagem Celular Transformada , Humanos , Interferometria/métodos , Microscopia/métodos , Nanotecnologia/métodos , Proteínas/metabolismo
4.
Nano Lett ; 18(1): 513-519, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29227108

RESUMO

Cellular secretion of proteins into the extracellular environment is an essential mediator of critical biological mechanisms, including cell-to-cell communication, immunological response, targeted delivery, and differentiation. Here, we report a novel methodology that allows for the real-time detection and imaging of single unlabeled proteins that are secreted from individual living cells. This is accomplished via interferometric detection of scattered light (iSCAT) and is demonstrated with Laz388 cells, an Epstein-Barr virus (EBV)-transformed B cell line. We find that single Laz388 cells actively secrete IgG antibodies at a rate of the order of 100 molecules per second. Intriguingly, we also find that other proteins and particles spanning ca. 100 kDa-1 MDa are secreted from the Laz388 cells in tandem with IgG antibody release, likely arising from EBV-related viral proteins. The technique is general and, as we show, can also be applied to studying the lysate of a single cell. Our results establish label-free iSCAT imaging as a powerful tool for studying the real-time exchange between cells and their immediate environment with single-protein sensitivity.


Assuntos
Linfócitos B/imunologia , Infecções por Vírus Epstein-Barr/imunologia , Herpesvirus Humano 4/imunologia , Imunoglobulina G/análise , Análise de Célula Única/métodos , Linfócitos B/virologia , Linhagem Celular , Herpesvirus Humano 4/isolamento & purificação , Humanos , Imunoglobulina G/imunologia , Luz , Microscopia de Interferência/métodos , Imagem Óptica/métodos , Espalhamento de Radiação
5.
Nat Commun ; 8: 14521, 2017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-28223699

RESUMO

Fluorescence intermittency or blinking is observed in nearly all nanoscale fluorophores. It is characterized by universal power-law distributions in on- and off-times as well as 1/f behaviour in corresponding emission power spectral densities. Blinking, previously seen in confined zero- and one-dimensional systems has recently been documented in two-dimensional reduced graphene oxide. Here we show that unexpected blinking during graphene oxide-to-reduced graphene oxide photoreduction is attributed, in large part, to the redistribution of carbon sp2 domains. This reclustering generates fluctuations in the number/size of emissive graphenic nanoclusters wherein multiscale modelling captures essential experimental aspects of reduced graphene oxide's absorption/emission trajectories, while simultaneously connecting them to the underlying photochemistry responsible for graphene oxide's reduction. These simulations thus establish causality between currently unexplained, long timescale emission intermittency in a quantum mechanical fluorophore and identifiable chemical reactions that ultimately lead to switching between on and off states.

6.
Nat Commun ; 7: 12726, 2016 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-27577091

RESUMO

Recent advances in semiconductor nanostructure syntheses provide unprecedented control over electronic quantum confinement and have led to extensive investigations of their size- and shape-dependent optical/electrical properties. Notably, spectroscopic measurements show that optical bandgaps of one-dimensional CdSe nanowires are substantially (approximately 100 meV) lower than their zero-dimensional counterparts for equivalent diameters spanning 5-10 nm. But what, exactly, dictates the dimensional crossover of a semiconductor's electronic structure? Here we probe the one-dimensional to zero-dimensional transition of CdSe using single nanowire/nanorod absorption spectroscopy. We find that carrier electrostatic interactions play a fundamental role in establishing dimensional crossover. Moreover, the critical length at which this transition occurs is governed by the aspect ratio-dependent interplay between carrier confinement and dielectric contrast/confinement energies.

7.
Nano Lett ; 15(7): 4317-21, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26057349

RESUMO

We provide, for the first time, direct experimental evidence for heterogeneous blinking in reduced graphene oxide (rGO) during photolysis. The spatially resolved intermittency originates from regions within individual rGO sheets and shows 1/f-like power spectral density. We describe the evolution of rGO blinking using the multiple recombination center (MRC) model that captures common features of nanoscale blinking. Our results illustrate the universal nature of blinking and suggest a common microscopic origin for the effect.

8.
Nano Lett ; 14(6): 3172-9, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24831202

RESUMO

Laser reduction of graphene oxide (GO) offers unique opportunities for the rapid, nonchemical production of graphene. By tuning relevant reduction parameters, the band gap and conductivity of reduced GO can be precisely controlled. In situ monitoring of single layer GO reduction is therefore essential. In this report, we show the direct observation of laser-induced, single layer GO reduction through correlated changes to its absorption and emission. Absorption/emission movies illustrate the initial stages of single layer GO reduction, its transition to reduced-GO (rGO) as well as its subsequent decomposition upon prolonged laser illumination. These studies reveal GO's photoreduction life cycle and through it native GO/rGO absorption coefficients, their intrasheet distributions as well as their spatial heterogeneities. Extracted absorption coefficients for unreduced GO are α405 nm ≈ 6.5 ± 1.1 × 10(4) cm(-1), α520 nm ≈ 2.1 ± 0.4 × 10(4) cm(-1), and α640 nm ≈ 1.1 ± 0.3 × 10(4) cm(-1) while corresponding rGO α-values are α405 nm ≈ 21.6 ± 0.6 × 10(4) cm(-1), α520 nm ≈ 16.9 ± 0.4 × 10(4) cm(-1), and α640 nm ≈ 14.5 ± 0.4 × 10(4) cm(-1). More importantly, the correlated absorption/emission imaging provides us with unprecedented insight into GO's underlying photoreduction mechanism, given our ability to spatially resolve its kinetics and to connect local rate constants to activation energies. On a broader level, the developed absorption imaging is general and can be applied toward investigating the optical properties of other two-dimensional materials, especially those that are nonemissive and are invisible to current single molecule optical techniques.

9.
ACS Appl Mater Interfaces ; 6(4): 2262-9, 2014 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-24471981

RESUMO

We show the general functionalization of cotton fabrics using solution-synthesized CdSe and CdTe nanowires (NWs). Conformal coatings onto individual cotton fibers have been achieved through various physical and chemical approaches. Some involve the electrostatic attraction of NWs to cotton charged positively with a Van de Graaff generator or via 2,3-epoxypropyltrimethylammonium chloride treatments. Resulting NW-functionalized textiles consist of dense, conformal coatings and have been characterized for their UV-visible absorption as well as Raman activity. We demonstrate potential uses of these functionalized textiles through two proof-of-concept applications. The first entails barcoding cotton using the unique Raman signature of the NWs. We also demonstrate the surface-enhancement of their Raman signatures using codeposited Au. A second demonstration takes advantage of the photoconductive nature of semiconductor NWs to create cotton-based photodetectors. Apart from these illustrations, NW-functionalized cotton textiles may possess other uses in the realm of medical, anticounterfeiting, and photocatalytic applications.

10.
Nano Lett ; 13(12): 5777-84, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24245975

RESUMO

Graphene oxide (GO) is an important precursor in the production of chemically derived graphene. During reduction, GO's electrical conductivity and band gap change gradually. Doping and chemical functionalization are also possible, illustrating GO's immense potential in creating functional devices through control of its local hybridization. Here we show that laser-induced photolysis controllably reduces individual single-layer GO sheets. The reaction can be followed in real time through sizable decreases in GO's photoluminescence efficiency along with spectral blueshifts. As-produced reduced graphene oxide (rGO) sheets undergo additional photolysis, characterized by dramatic emission enhancements and spectral redshifts. Both GO's reduction and subsequent conversion to photobrightened rGO are captured through movies of their photoluminescence kinetics. Rate maps illustrate sizable spatial and temporal heterogeneities in sp(2) domain growth and reveal how reduction "flows" across GO and rGO sheets. The observed heterogeneous reduction kinetics provides mechanistic insight into GO's conversion to chemically derived graphene and highlights opportunities for overcoming its dynamic, chemical disorder.


Assuntos
Grafite/química , Compostos Orgânicos/química , Óxidos/química , Condutividade Elétrica , Cinética , Fotólise
11.
Adv Mater ; 25(4): 601-5, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-23027517

RESUMO

The electrostatic alignment and directed assembly of semiconductor nanowires into macroscopic, centimeter-long yarns is demonstrated. Different morphologies can be produced, including longitudinally segmented/graded yarns or mixed composition fibers. Nanowire yarns display long range photoconductivities and open up exciting opportunities for potential use in future nanowire-based textiles or in solar photovoltaics.

12.
J Phys Chem Lett ; 3(16): 2215-20, 2012 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-26295773

RESUMO

The origin of sizable absorption polarization anisotropies (ρabs) in one-dimensional (1D) semiconductor nanowires (NWs) has been debated. Invoked explanations employ either classical or quantum mechanical origins, where the classical approach suggests dielectric constant mismatches between the NW and its surrounding environment as the predominant source of observed polarization sensitivities. At the same time, the confinement-influenced mixing of states suggests a sizable contribution from polarization-sensitive transition selection rules. Sufficient evidence exists in the literature to support either claim. However, in all cases, these observations stem from excitation polarization anisotropy (ρexc) studies, which only indirectly measure ρabs. In this manuscript, we directly measure the band edge extinction polarization anisotropies (ρext) of individual CdSe NWs using single NW extinction spectroscopy. Observed polarization anisotropies possess distinct spectral features and wavelength dependencies that correlate well with theoretical transition selection rules derived from a six-band k·p theory used to model the electronic structure of CdSe NWs.

13.
Nano Lett ; 11(8): 3307-11, 2011 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-21770437

RESUMO

Here we show the first direct extinction spectra of single one-dimensional (1D) semiconductor nanostructures obtained at room temperature utilizing a spatial modulation approach. (1) For these materials, ensemble averaging in conventional extinction spectroscopy has limited our understanding of the interplay between carrier confinement and their electrostatic interactions. (2-4) By probing individual CdSe nanowires (NWs), we have identified and assigned size-dependent exciton transitions occurring across the visible. In turn, we have revealed the existence of room temperature 1D excitons in the narrowest NWs.


Assuntos
Nanofios , Análise Espectral/métodos , Compostos de Cádmio/química , Compostos de Selênio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...