Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 13(40): 11772-11784, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36320899

RESUMO

Natural gas constitutes a growing share of global primary energy due to its abundant supply and lower CO2 emission intensity compared to coal. For many natural gas reserves, CO2 contamination must be removed at the wellhead to meet pipeline specifications. Here, we demonstrate the potential of the diamine-appended metal-organic framework ee-2-Mg2(dobpdc) (ee-2 = N,N-diethylethylenediamine; dobpdc4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) as a next-generation CO2 capture material for high-pressure natural gas purification. Owing to a cooperative adsorption mechanism involving formation of ammonium carbamate chains, ee-2-Mg2(dobpdc) can be readily regenerated with a minimal change in temperature or pressure and maintains its CO2 capacity in the presence of water. Moreover, breakthrough experiments reveal that water enhances the CO2 capture performance of ee-2-Mg2(dobpdc) by eliminating "slip" of CO2 before full breakthrough. Spectroscopic characterization and multicomponent adsorption isobars suggest that the enhanced performance under humid conditions arises from preferential stabilization of the CO2-inserted phase in the presence of water. The favorable performance of ee-2-Mg2(dobpdc) is further demonstrated through comparison with a benchmark material for this separation, zeolite 13X, as well as extended pressure cycling. Overall, these results support continued development of ee-2-Mg2(dobpdc) as a promising adsorbent for natural gas purification.

2.
J Phys Chem Lett ; 10(22): 7044-7049, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31664830

RESUMO

Variable-temperature 15N solid-state NMR spectroscopy is used to uncover the dynamics of three diamines appended to the metal-organic framework Mg2(dobpdc) (dobpdc4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate), an important family of CO2 capture materials. The results imply both bound and free amine nitrogen environments exist when diamines are coordinated to the framework open Mg2+ sites. There are rapid exchanges between two nitrogen environments for all three diamines, the rates and energetics of which are quantified by 15N solid-state NMR data and corroborated by density functional theory calculations and molecular dynamics simulations. The activation energy for the exchange provides a measure of the metal-amine bond strength. The unexpected negative correlation between the metal-amine bond strength and CO2 adsorption step pressure reveals that metal-amine bond strength is not the only important factor in determining the CO2 adsorption properties of diamine-appended Mg2(dobpdc) metal-organic frameworks.

3.
J Am Chem Soc ; 139(30): 10526-10538, 2017 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-28669181

RESUMO

In the transition to a clean-energy future, CO2 separations will play a critical role in mitigating current greenhouse gas emissions and facilitating conversion to cleaner-burning and renewable fuels. New materials with high selectivities for CO2 adsorption, large CO2 removal capacities, and low regeneration energies are needed to achieve these separations efficiently at scale. Here, we present a detailed investigation of nine diamine-appended variants of the metal-organic framework Mg2(dobpdc) (dobpdc4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) that feature step-shaped CO2 adsorption isotherms resulting from cooperative and reversible insertion of CO2 into metal-amine bonds to form ammonium carbamate chains. Small modifications to the diamine structure are found to shift the threshold pressure for cooperative CO2 adsorption by over 4 orders of magnitude at a given temperature, and the observed trends are rationalized on the basis of crystal structures of the isostructural zinc frameworks obtained from in situ single-crystal X-ray diffraction experiments. The structure-activity relationships derived from these results can be leveraged to tailor adsorbents to the conditions of a given CO2 separation process. The unparalleled versatility of these materials, coupled with their high CO2 capacities and low projected energy costs, highlights their potential as next-generation adsorbents for a wide array of CO2 separations.


Assuntos
Dióxido de Carbono/química , Complexos de Coordenação/química , Diaminas/química , Magnésio/química , Estruturas Metalorgânicas/química , Adsorção , Complexos de Coordenação/síntese química , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Propriedades de Superfície
7.
Phys Chem Chem Phys ; 17(33): 21448-57, 2015 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-26219236

RESUMO

Diamine-appended metal-organic frameworks display great promise for carbon capture applications, due to unusual step-shaped adsorption behavior that was recently attributed to a cooperative mechanism in which the adsorbed CO2 molecules insert into the metal-nitrogen bonds to form ordered ammonium carbamate chains [McDonald et al., Nature, 2015, 519, 303]. We present a detailed study of this mechanism by in situ X-ray absorption spectroscopy and density functional theory calculations. Distinct spectral changes at the N and O K-edges are apparent upon CO2 adsorption in both mmen-Mg2(dobpdc) and mmen-Mn2(dobpdc), and these are evaluated based upon computed spectra from three potential adsorption structures. The computations reveal that the observed spectral changes arise from specific electronic states that are signatures of a quasi-trigonal planar carbamate species that is hydrogen bonded to an ammonium cation. This eliminates two of the three structures studied, and confirms the insertion mechanism. We note the particular sensitivity of X-ray absorption spectra to the insertion step of this mechanism, underpinning the strength of the technique for examining subtle chemical changes upon gas adsorption.

8.
J Am Chem Soc ; 137(14): 4787-803, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25844924

RESUMO

Despite the large number of metal-organic frameworks that have been studied in the context of post-combustion carbon capture, adsorption equilibria of gas mixtures including CO2, N2, and H2O, which are the three biggest components of the flue gas emanating from a coal- or natural gas-fired power plant, have never been reported. Here, we disclose the design and validation of a high-throughput multicomponent adsorption instrument that can measure equilibrium adsorption isotherms for mixtures of gases at conditions that are representative of an actual flue gas from a power plant. This instrument is used to study 15 different metal-organic frameworks, zeolites, mesoporous silicas, and activated carbons representative of the broad range of solid adsorbents that have received attention for CO2 capture. While the multicomponent results presented in this work provide many interesting fundamental insights, only adsorbents functionalized with alkylamines are shown to have any significant CO2 capacity in the presence of N2 and H2O at equilibrium partial pressures similar to those expected in a carbon capture process. Most significantly, the amine-appended metal organic framework mmen-Mg2(dobpdc) (mmen = N,N'-dimethylethylenediamine, dobpdc (4-) = 4,4'-dioxido-3,3'-biphenyldicarboxylate) exhibits a record CO2 capacity of 4.2 ± 0.2 mmol/g (16 wt %) at 0.1 bar and 40 °C in the presence of a high partial pressure of H2O.

9.
Nature ; 519(7543): 303-8, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25762144

RESUMO

The process of carbon capture and sequestration has been proposed as a method of mitigating the build-up of greenhouse gases in the atmosphere. If implemented, the cost of electricity generated by a fossil fuel-burning power plant would rise substantially, owing to the expense of removing CO2 from the effluent stream. There is therefore an urgent need for more efficient gas separation technologies, such as those potentially offered by advanced solid adsorbents. Here we show that diamine-appended metal-organic frameworks can behave as 'phase-change' adsorbents, with unusual step-shaped CO2 adsorption isotherms that shift markedly with temperature. Results from spectroscopic, diffraction and computational studies show that the origin of the sharp adsorption step is an unprecedented cooperative process in which, above a metal-dependent threshold pressure, CO2 molecules insert into metal-amine bonds, inducing a reorganization of the amines into well-ordered chains of ammonium carbamate. As a consequence, large CO2 separation capacities can be achieved with small temperature swings, and regeneration energies appreciably lower than achievable with state-of-the-art aqueous amine solutions become feasible. The results provide a mechanistic framework for designing highly efficient adsorbents for removing CO2 from various gas mixtures, and yield insights into the conservation of Mg(2+) within the ribulose-1,5-bisphosphate carboxylase/oxygenase family of enzymes.


Assuntos
Aminas/química , Dióxido de Carbono/química , Dióxido de Carbono/isolamento & purificação , Sequestro de Carbono , Adsorção , Efeito Estufa/prevenção & controle , Magnésio/metabolismo , Ribulose-Bifosfato Carboxilase/química , Ribulose-Bifosfato Carboxilase/metabolismo , Temperatura , Difração de Raios X
10.
Chem Commun (Camb) ; 51(24): 4985-8, 2015 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-25706189

RESUMO

A methodology utilizing a thermogravimetric analyzer to monitor propane uptake following incremental increases of the temperature is demonstrated as a means of rapidly identifying porous materials and determining the optimum activation conditions of metal-organic frameworks.

11.
J Am Chem Soc ; 136(6): 2432-40, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24456083

RESUMO

The elimination of specific environmental and industrial contaminants, which are hazardous at only part per million to part per billion concentrations, poses a significant technological challenge. Adsorptive materials designed for such processes must be engendered with an exceptionally high enthalpy of adsorption for the analyte of interest. Rather than relying on a single strong interaction, the use of multiple chemical interactions is an emerging strategy for achieving this requisite physical parameter. Herein, we describe an efficient, catalytic synthesis of diamondoid porous organic polymers densely functionalized with carboxylic acids. Physical parameters such as pore size distribution, application of these materials to low-pressure ammonia adsorption, and comparison with analogous materials featuring functional groups of varying acidity are presented. In particular, BPP-5, which features a multiply interpenetrated structure dominated by <6 Å pores, is shown to exhibit an uptake of 17.7 mmol/g at 1 bar, the highest capacity yet demonstrated for a readily recyclable material. A complementary framework, BPP-7, features slightly larger pore sizes, and the resulting improvement in uptake kinetics allows for efficient adsorption at low pressure (3.15 mmol/g at 480 ppm). Overall, the data strongly suggest that the spatial arrangement of acidic sites allows for cooperative behavior, which leads to enhanced NH3 adsorption.

12.
J Am Chem Soc ; 135(48): 18183-90, 2013 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-24224556

RESUMO

We explore the local electronic signatures of molecular adsorption at coordinatively unsaturated binding sites in the metal-organic framework Mg-MOF-74 using X-ray spectroscopy and first-principles calculations. In situ measurements at the Mg K-edge reveal distinct pre-edge absorption features associated with the unique, open coordination of the Mg sites which are suppressed upon adsorption of CO2 and N,N'-dimethylformamide. Density functional theory shows that these spectral changes arise from modifications of local symmetry around the Mg sites upon gas uptake and are strongly dependent on the metal-adsorbate binding strength. The expanded MOF Mg2(dobpdc) displays the same behavior upon adsorption of CO2 and N,N'-dimethylethylenediamine. Similar sensitivity to local symmetry is expected for any open metal site, making X-ray spectroscopy an ideal tool for examining adsorption in such MOFs. Qualitative agreement between ambient-temperature experimental and 0 K theoretical spectra is good, with minor discrepancies thought to result from framework vibrational motion.

13.
J Am Chem Soc ; 135(20): 7402-5, 2013 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-23627764

RESUMO

The mechanism of CO2 adsorption in the amine-functionalized metal-organic framework mmen-Mg2(dobpdc) (dobpdc(4-) = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate; mmen = N,N'-dimethylethylenediamine) was characterized by quantum-chemical calculations. The material was calculated to demonstrate 2:2 amine:CO2 stoichiometry with a higher capacity and weaker CO2 binding energy than for the 2:1 stoichiometry observed in most amine-functionalized adsorbents. We explain this behavior in the form of a hydrogen-bonded complex involving two carbamic acid moieties resulting from the adsorption of CO2 onto the secondary amines.


Assuntos
Aminas/química , Dióxido de Carbono/química , Magnésio/química , Compostos Organometálicos/química , Adsorção , Modelos Moleculares , Conformação Molecular , Propriedades de Superfície
15.
J Am Chem Soc ; 134(16): 7056-65, 2012 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-22475173

RESUMO

Two new metal-organic frameworks, M(2)(dobpdc) (M = Zn (1), Mg (2); dobpdc(4-) = 4,4'-dioxido-3,3'-biphenyldicarboxylate), adopting an expanded MOF-74 structure type, were synthesized via solvothermal and microwave methods. Coordinatively unsaturated Mg(2+) cations lining the 18.4-Å-diameter channels of 2 were functionalized with N,N'-dimethylethylenediamine (mmen) to afford Mg(2)(dobpdc)(mmen)(1.6)(H(2)O)(0.4) (mmen-Mg(2)(dobpdc)). This compound displays an exceptional capacity for CO(2) adsorption at low pressures, taking up 2.0 mmol/g (8.1 wt %) at 0.39 mbar and 25 °C, conditions relevant to removal of CO(2) from air, and 3.14 mmol/g (12.1 wt %) at 0.15 bar and 40 °C, conditions relevant to CO(2) capture from flue gas. Dynamic gas adsorption/desorption cycling experiments demonstrate that mmen-Mg(2)(dobpdc) can be regenerated upon repeated exposures to simulated air and flue gas mixtures, with cycling capacities of 1.05 mmol/g (4.4 wt %) after 1 h of exposure to flowing 390 ppm CO(2) in simulated air at 25 °C and 2.52 mmol/g (9.9 wt %) after 15 min of exposure to flowing 15% CO(2) in N(2) at 40 °C. The purity of the CO(2) removed from dry air and flue gas in these processes was estimated to be 96% and 98%, respectively. As a flue gas adsorbent, the regeneration energy was estimated through differential scanning calorimetry experiments to be 2.34 MJ/kg CO(2) adsorbed. Overall, the performance characteristics of mmen-Mg(2)(dobpdc) indicate it to be an exceptional new adsorbent for CO(2) capture, comparing favorably with both amine-grafted silicas and aqueous amine solutions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...