Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Syst Biol ; 72(2): 249-263, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35583314

RESUMO

Oenothera sect. Calylophus is a North American group of 13 recognized taxa in the evening primrose family (Onagraceae) with an evolutionary history that may include independent origins of bee pollination, edaphic endemism, and permanent translocation heterozygosity. Like other groups that radiated relatively recently and rapidly, taxon boundaries within Oenothera sect. Calylophus have remained challenging to circumscribe. In this study, we used target enrichment, flanking noncoding regions, gene tree/species tree methods, tests for gene flow modified for target-enrichment data, and morphometric analysis to reconstruct phylogenetic hypotheses, evaluate current taxon circumscriptions, and examine character evolution in Oenothera sect. Calylophus. Because sect. Calylophus comprises a clade with a relatively restricted geographic range, we were able to extensively sample across the range of geographic, edaphic, and morphological diversity in the group. We found that the combination of exons and flanking noncoding regions led to improved support for species relationships. We reconstructed potential hybrid origins of some accessions and note that if processes such as hybridization are not taken into account, the number of inferred evolutionary transitions may be artificially inflated. We recovered strong evidence for multiple evolutionary origins of bee pollination from ancestral hawkmoth pollination, edaphic specialization on gypsum, and permanent translocation heterozygosity. This study applies newly emerging techniques alongside dense infraspecific sampling and morphological analyses to effectively reconstruct the recalcitrant history of a rapid radiation. [Gypsum endemism; Oenothera sect. Calylophus; Onagraceae; phylogenomics; pollinator shift; recent radiation; target enrichment.].


Assuntos
Oenothera , Animais , Filogenia , Oenothera/genética , Sulfato de Cálcio , Polinização
2.
PhytoKeys ; 216: 103-116, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36761892

RESUMO

A new species of functionally dioecious bush tomato of SolanumsubgenusLeptostemonum is described. Solanumscalarium Martine & T.M.Williams, sp. nov., is a member of the taxonomically challenging "Kimberley dioecious clade" in Australia and differs from other species in the group in its spreading decumbent habit and conspicuously prickly male floral rachis. The species is so far known from one site in Judbarra/Gregory National Park in the Northern Territory. Ex situ crosses and confirmation of inaperturate pollen grains produced in morphologically cosexual flowers indicate that these flowers are functionally female and the species is functionally dioecious. The scientific name reflects the ladder-like appearance of the inflorescence rachis armature of male individuals, the stone staircase that provides access to the type locality at the Escarpment Lookout Walk, and the importance of maintaining equitable and safe access to outdoor spaces. The common name Garrarnawun Bush Tomato is proposed in recognition of the lookout point at this site, a traditional meeting place of the Wardaman and Nungali-Ngaliwurru peoples whose lands overlap in this area.

3.
Am J Bot ; 108(11): 2282-2293, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34643272

RESUMO

PREMISE: Five to six percent of angiosperm species exhibit a dioecious sexual system, with unisexual "male" or "female" flowers borne on separate plants. The consequent need for inter-individual pollen exchange is a special challenge for taxa where pollen is the sole pollinator reward. Dioecious Australian Solanum assure visits from pollen-foraging bees via production of inaperturate pollen in functionally female (morphologically bisexual) flowers. Biochemical composition of pollen from Australian Solanum has not been assessed nor compared to porate pollen from staminate flowers to reveal whether these flowers differ in their pollinator reward potential. METHODS: Porate pollen from male flowers and inaperturate pollen from functionally female flowers of two functionally dioecious Australian species were compared for protein and amino acid content. We also assessed pollen from bisexual and staminate flowers of a closely related andromonoecious species, in which all pollen is porate, as a comparison across co-occurring sexual systems. RESULTS: In both functionally dioecious species, porate pollen grains from staminate flowers had significantly higher levels of proteins and amino acids than inaperturate pollen grains from functionally female flowers. Levels of proteins and amino acids were highest in bisexual and staminate flowers of the andromonoecious species. CONCLUSIONS: Higher levels of proteins and amino acids in porate pollen of "male" flowers in our functionally dioecious Solanum species suggests a greater nutritive reward for bees foraging on "male" plants than for those foraging on functionally "female" plants. Greater reward in porate pollen (including andromonoecious species) may be connected to the potential to generate a pollen tube.


Assuntos
Polinização , Solanum , Animais , Austrália , Abelhas , Flores , Pólen , Recompensa
5.
Am J Bot ; 108(7): 1270-1288, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34289081

RESUMO

PREMISE: Divergence depends on the strength of selection and frequency of gene flow between taxa, while reproductive isolation relies on mating barriers and geographic distance. Less is known about how these processes interact at early stages of speciation. Here, we compared population-level differentiation in floral phenotype and genetic sequence variation among recently diverged Castilleja to explore patterns of diversification under different scenarios of reproductive isolation. METHODS: Using target enrichment enabled by the Angiosperms353 probe set, we assessed genetic distance among 50 populations of four Castilleja species. We investigated whether patterns of genetic divergence are explained by floral trait variation or geographic distance in two focal groups: the widespread C. sessiliflora and the more restricted C. purpurea species complex. RESULTS: We document that C. sessiliflora and the C. purpurea complex are characterized by high diversity in floral color across varying geographic scales. Despite phenotypic divergence, groups were not well supported in phylogenetic analyses, and little genetic differentiation was found across targeted Angiosperms353 loci. Nonetheless, a principal coordinate analysis of single nucleotide polymorphisms revealed differentiation within C. sessiliflora across floral morphs and geography and less differentiation among species of the C. purpurea complex. CONCLUSIONS: Patterns of genetic distance in C. sessiliflora suggest species cohesion maintained over long distances despite variation in floral traits. In the C. purpurea complex, divergence in floral color across narrow geographic clines may be driven by recent selection on floral color. These contrasting patterns of floral and genetic differentiation reveal that divergence can arise via multiple eco-evolutionary paths.


Assuntos
Orobanchaceae , Isolamento Reprodutivo , Evolução Biológica , Deriva Genética , Filogenia
6.
Appl Plant Sci ; 7(8): e11281, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31467804

RESUMO

PREMISE: Botanical faculty and staff at academic institutions are often tasked with establishing and/or caring for plant collections held in small greenhouse facilities. Once plants are in place, an especially acute challenge is managing plant pest/pathogen populations. Integrated pest management (IPM) approaches are an excellent option, but few examples exist in the literature of successful programs that have been developed in academic small greenhouse settings. METHODS AND RESULTS: Over several years, we developed an IPM program for two small research greenhouses on the campus of a primarily undergraduate institution where hundreds of plants have been grown for studies in the genus Solanum. We here present a synopsis of the cultural, mechanical, physical, and biological controls used as part of our successful IPM strategy-including details on the efficacy of multiple predatory insects-with the hope of providing a model for sustainable pest management in the higher education environment. CONCLUSIONS: IPM can be an effective strategy for maintaining healthy plant populations in small research greenhouses, but it requires a consistent investment of time and funding. A well-cared-for plant collection might help support numerous positive outcomes, including advances in faculty scholarship and opportunities for student learning and/or training.

7.
PhytoKeys ; 124: 39-55, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31258372

RESUMO

A bush tomato that has evaded classification by solanologists for decades has been identified and is described as a new species belonging to the Australian "Solanumdioicum group" of the Ord Victoria Plain biogeographic region in the monsoon tropics of the Northern Territory. Although now recognised to be andromonoecious, S.plastisexum Martine & McDonnell, sp. nov. exhibits multiple reproductive phenotypes, with solitary perfect flowers, a few staminate flowers or with cymes composed of a basal hermaphrodite and an extended rachis of several to many staminate flowers. When in fruit, the distal rachis may abcise and drop. A member of SolanumsubgenusLeptostemonum, Solanumplastisexum is allied to the S.eburneum Symon species group. Morphometric analyses presented here reveal that S.plastisexum differs statistically from all of its closest relatives including S.eburneum, S.diversiflorum F. Meull., S.jobsonii Martine, J.Cantley & L.M.Lacey, S.succosum A.R.Bean & Albr. and S.watneyi Martine & Frawley in both reproductive and vegetative characters. We present evidence supporting the recognition of S.plastisexum as a distinctive entity, a description of the species, representative photographs, a map showing the distribution of members of the S.eburneum species group and a key to the andromonoecious Solanum species of the Northern Territory of Australia. This new species is apparently labile in its reproductive expression, lending to its epithet, and is a model for the sort of sexual fluidity that is present throughout the plant kingdom.

8.
PLoS One ; 14(4): e0207564, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30998778

RESUMO

The dioecious and andromonoecious Solanum taxa (the "S. dioicum group") of the Australian Monsoon Tropics have been the subject of phylogenetic and taxonomic study for decades, yet much of their basic biology is still unknown. This is especially true for plant-animal interactions, including the influence of fruit form and calyx morphology on seed dispersal. We combine field/greenhouse observations and specimen-based study with phylogenetic analysis of seven nuclear regions obtained via a microfluidic PCR-based enrichment strategy and high-throughput sequencing, and present the first species-tree hypothesis for the S. dioicum group. Our results suggest that epizoochorous trample burr seed dispersal (strongly linked to calyx accrescence) is far more common among Australian Solanum than previously thought and support the hypothesis that the combination of large fleshy fruits and endozoochorous dispersal represents a reversal in this study group. The general lack of direct evidence related to biotic dispersal (epizoochorous or endozoochorous) may be a function of declines and/or extinctions of vertebrate dispersers. Because of this, some taxa might now rely on secondary dispersal mechanisms (e.g. shakers, tumbleweeds, rafting) as a means to maintain current populations and establish new ones.


Assuntos
Frutas/genética , Genes de Plantas , Filogenia , Dispersão de Sementes/genética , Solanum/genética , Austrália
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...