Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
J Exp Clin Cancer Res ; 43(1): 4, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38163893

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest types of cancer and the chemotherapies such as gemcitabine/nab-paclitaxel are confronted with intrinsic or acquired resistance. The aim of this study was to investigate mechanisms underlying paclitaxel resistance in PDAC and explore strategies to overcome it. METHODS: Three paclitaxel (PR) and gemcitabine resistant (GR) PDAC models were established. Transcriptomics and proteomics were used to identify conserved mechanisms of drug resistance. Genetic and pharmacological approaches were used to overcome paclitaxel resistance. RESULTS: Upregulation of ABCB1 through locus amplification was identified as a conserved feature unique to PR cells. ABCB1 was not affected in any of the GR models and no cross resistance was observed. The ABCB1 inhibitor verapamil or siRNA-mediated ABCB1 depletion sensitized PR cells to paclitaxel and prevented efflux of ABCB1 substrates in all models. ABCB1 expression was associated with a trend towards shorter survival in patients who had received gemcitabine/nab-paclitaxel treatment. A pharmacological screen identified known and novel kinase inhibitors that attenuate efflux of ABCB1 substrates and sensitize PR PDAC cells to paclitaxel. CONCLUSION: Upregulation of ABCB1 through locus amplification represents a novel, conserved mechanism of PDAC paclitaxel resistance. Kinase inhibitors identified in this study can be further (pre) clinically explored as therapeutic strategies to overcome paclitaxel resistance in PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Gencitabina , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética
2.
Int J Radiat Oncol Biol Phys ; 118(5): 1328-1343, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914140

RESUMO

PURPOSE: Chemoresistance remains a major challenge in treating pancreatic ductal adenocarcinoma (PDAC). Although chemoradiation has proven effective in other tumor types, such as head and neck squamous cell carcinoma, its role in PDAC and effect on acquired chemoresistance have yet to be fully explored. In this study, we investigated the sensitivity of gemcitabine-resistant (GR) and paclitaxel-resistant (PR) PDAC cells to ionizing radiation (IR) and their underlying mechanisms. METHODS AND MATERIALS: GR and PR clones were generated from PANC-1, PATU-T, and SUIT2-007 pancreatic cancer cell lines. Cell survival after radiation was assessed using clonogenic assay, sulforhodamine B assay, apoptosis, and spheroid growth by bioluminescence. Radiation-induced DNA damage was assessed using Western blot, extra-long polymerase chain reaction, reactive oxygen species production, and immunofluorescence. Autophagy and modulation of the Hippo signaling pathway were investigated using proteomics, Western blot, immunofluorescence, and reverse-transcription quantitative polymerase chain reaction. RESULTS: In both 2- and 3-dimensional settings, PR cells were more sensitive to IR and showed decreased ß-globin amplification, indicating more DNA damage accumulation compared with GR or wild-type cells after 24 hours. Proteomic analysis of PR PATU-T cells revealed that the protein MST4, a kinase involved in autophagy and the Hippo signaling pathway, was highly downregulated. A differential association was found between autophagy and radiation treatment depending on the cell model. Interestingly, increased yes-associated protein nuclear localization and downstream Hippo signaling pathway target gene expression were observed in response to IR. CONCLUSIONS: This was the first study investigating the potential of IR in targeting PDAC cells with acquired chemoresistance. Our results demonstrate that PR cells exhibit enhanced sensitivity to IR due to greater accumulation of DNA damage. Additionally, depending on the specific cellular context, radiation-induced modulation of autophagy and the Hippo signaling pathway emerged as potential underlying mechanisms, findings with potential to inform personalized treatment strategies for patients with acquired chemoresistance.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Gencitabina , Paclitaxel/farmacologia , Desoxicitidina/farmacologia , Proteômica , Linhagem Celular Tumoral , Neoplasias Pancreáticas/radioterapia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/radioterapia , Radiação Ionizante , Resistencia a Medicamentos Antineoplásicos/genética , Proliferação de Células
3.
Cytokine Growth Factor Rev ; 73: 3-19, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37652834

RESUMO

The term small extracellular vesicle (sEV) is a comprehensive term that includes any type of cell-derived, membrane-delimited particle that has a diameter < 200 nm, and which includes exosomes and smaller microvesicles. sEVs transfer bioactive molecules between cells and are crucial for cellular homeostasis and particularly during tumor development, where sEVs provide important contributions to the formation of the premetastic niche and to their altered metabolism. sEVs are thus legitimate targets for intervention and have also gained increasing interest as an easily accessible source of biomarkers because they can be rapidly isolated from serum/plasma and their molecular cargo provides information on their cell-of origin. To target sEVs that are specific for a given cell/disease it is essential to identify EV surface proteins that are characteristic of that cell/disease. Mass-spectrometry based proteomics is widely used for the identification and quantification of sEV proteins. The methods used for isolating the sEVs, preparing the sEV sample for proteomics analysis, and mass spectrometry analysis, can have a strong influence on the results and requires careful consideration. This review provides an overview of the approaches used for sEV proteomics and discusses the inherent compromises regarding EV purity versus depth of coverage. Additionally, it discusses the practical applications of the methods to unravel the involvement of sEVs in regulating the metabolism of pancreatic ductal adenocarcinoma (PDAC). The metabolic reprogramming in PDAC includes enhanced glycolysis, elevated glutamine metabolism, alterations in lipid metabolism, mitochondrial dysfunction and hypoxia, all of which are crucial in promoting tumor cell growth. A thorough understanding of these metabolic adaptations is imperative for the development of targeted therapies to exploit PDAC's vulnerabilities.


Assuntos
Carcinoma Ductal Pancreático , Exossomos , Vesículas Extracelulares , Neoplasias Pancreáticas , Humanos , Proteômica/métodos , Vesículas Extracelulares/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias Pancreáticas
4.
Nat Metab ; 5(9): 1563-1577, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37653041

RESUMO

In the tumor microenvironment, adipocytes function as an alternate fuel source for cancer cells. However, whether adipocytes influence macromolecular biosynthesis in cancer cells is unknown. Here we systematically characterized the bidirectional interaction between primary human adipocytes and ovarian cancer (OvCa) cells using multi-platform metabolomics, imaging mass spectrometry, isotope tracing and gene expression analysis. We report that, in OvCa cells co-cultured with adipocytes and in metastatic tumors, a part of the glucose from glycolysis is utilized for the biosynthesis of glycerol-3-phosphate (G3P). Normoxic HIF1α protein regulates the altered flow of glucose-derived carbons in cancer cells, resulting in increased glycerophospholipids and triacylglycerol synthesis. The knockdown of HIF1α or G3P acyltransferase 3 (a regulatory enzyme of glycerophospholipid synthesis) reduced metastasis in xenograft models of OvCa. In summary, we show that, in an adipose-rich tumor microenvironment, cancer cells generate G3P as a precursor for critical membrane and signaling components, thereby promoting metastasis. Targeting biosynthetic processes specific to adipose-rich tumor microenvironments might be an effective strategy against metastasis.


Assuntos
Glicerol , Neoplasias Ovarianas , Humanos , Feminino , Adipócitos , Glucose , Fosfatos , Microambiente Tumoral
5.
Cell Metab ; 35(4): 633-650.e9, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36898381

RESUMO

The metabolic state represents a major hurdle for an effective adoptive T cell therapy (ACT). Indeed, specific lipids can harm CD8+ T cell (CTL) mitochondrial integrity, leading to defective antitumor responses. However, the extent to which lipids can affect the CTL functions and fate remains unexplored. Here, we show that linoleic acid (LA) is a major positive regulator of CTL activity by improving metabolic fitness, preventing exhaustion, and stimulating a memory-like phenotype with superior effector functions. We report that LA treatment enhances the formation of ER-mitochondria contacts (MERC), which in turn promotes calcium (Ca2+) signaling, mitochondrial energetics, and CTL effector functions. As a direct consequence, the antitumor potency of LA-instructed CD8 T cells is superior in vitro and in vivo. We thus propose LA treatment as an ACT potentiator in tumor therapy.


Assuntos
Linfócitos T CD8-Positivos , Ácido Linoleico , Ácido Linoleico/metabolismo , Transdução de Sinais
6.
Biomedicines ; 10(12)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36551810

RESUMO

Cardiac amyloidosis (CA) has long been considered a rare disease, but recent advancements in diagnostic tools have led to a reconsideration of the epidemiology of CA. Amyloid light-chain (AL) and transthyretin (ATTR) amyloidoses are the most common forms of cardiac amyloidosis. Due to the distinct treatments and the different prognoses, amyloid typing is crucial. Although a non-biopsy diagnosis can be obtained in ATTR amyloidosis when certain diagnostic criteria are fulfilled, tissue characterization still represents the gold standard for the diagnosis and typing of CA, particularly in AL amyloidosis. The present review focuses on the status of tissue characterization in cardiac amyloidosis, from histochemistry to immunohistochemistry and mass spectrometry, as well as on its future directions.

7.
Methods Mol Biol ; 2504: 41-54, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35467278

RESUMO

Proteomics characterization of blood and circulating material has been extensively explored for the study of pathological states. In particular, circulating small extracellular vesicles (sEV, diameter: 30-150 nm) are known to play an important role in intercellular communication processes, and proteomics profiling has been explored to develop minimally invasive assays for disease monitoring and diagnosis. Due to the genetic and physiological similarities between the two species, and also on account of their shorter life span and rapid disease progression, rodent models are the most commonly used animal model for many human diseases. Such models have provided invaluable insight into the molecular mechanisms of disease progression, candidate drug efficacy, therapy monitoring, and biomarkers research.Longitudinal investigations, in which individuals are monitored over periods of time, are more able to resolve molecular changes during disease progression because they circumvent the inter-individual variation. Longitudinal investigations of rodent models are challenging because of the limited amount of blood that can be withdrawn at each time; the American Association of Veterinary Science stipulates that fortnightly sampling should be limited to a maximum of 10% of the total blood volume. For adult mice this corresponds to approximately 75 µL of serum. We developed an approach for the isolation and characterization of serum sEV proteins from just 50 µL of serum, for longitudinal studies of disease mouse models. This chapter describes in detail the steps and considerations involved in the sEV isolation, morphological characterization, and proteome profiling by mass spectrometry.


Assuntos
Vesículas Extracelulares , Proteômica , Animais , Proteínas Sanguíneas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Vesículas Extracelulares/metabolismo , Espectrometria de Massas/métodos , Camundongos , Proteômica/métodos
8.
Cancers (Basel) ; 14(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35326703

RESUMO

The increase incidence of early colorectal cancer (T1 CRC) last years is mainly due to the introduction of population-based screening for CRC. T1 CRC staging based on histological criteria remains challenging and there is high variability among pathologists in the scoring of these criteria. It is crucial to unravel the biology behind the progression of adenoma into T1 CRC. Glycomic studies have reported extensively on alterations of the N-glycomic pattern in CRC; therefore, investigating these alterations may reveal new insights into the development of T1 CRC. We used matrix-assisted laser desorption ionization (MALDI) mass spectrometry imaging (MSI) to spatially profile the N-glycan species in a cohort of pT1 CRC using archival formalin-fixed and paraffin-embedded (FFPE) material. To generate structural information on the observed N-glycans, CE-ESI-MS/MS was used in conjunction with MALDI-MSI. Relative intensities and glycosylation traits were calculated based on a panel of 58 N-glycans. Our analysis showed pronounced differences between normal epithelium, dysplastic, and carcinoma regions. High-mannose-type N-glycans were higher in the dysplastic region than in carcinoma, which correlates to increased proliferation of the cells. We observed changes in the cancer invasive front, including higher expression of α2,3-linked sialic acids which followed the glycosylation pattern of the carcinoma region.

9.
Molecules ; 26(19)2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34641541

RESUMO

Glioblastoma Multiforme (GBM) is a brain tumor with a poor prognosis and low survival rates. GBM is diagnosed at an advanced stage, so little information is available on the early stage of the disease and few improvements have been made for earlier diagnosis. Longitudinal murine models are a promising platform for biomarker discovery as they allow access to the early stages of the disease. Nevertheless, their use in proteomics has been limited owing to the low sample amount that can be collected at each longitudinal time point. Here we used optimized microproteomics workflows to investigate longitudinal changes in the protein profile of serum, serum small extracellular vesicles (sEVs), and cerebrospinal fluid (CSF) in a GBM murine model. Baseline, pre-symptomatic, and symptomatic tumor stages were determined using non-invasive motor tests. Forty-four proteins displayed significant differences in signal intensities during GBM progression. Dysregulated proteins are involved in cell motility, cell growth, and angiogenesis. Most of the dysregulated proteins already exhibited a difference from baseline at the pre-symptomatic stage of the disease, suggesting that early effects of GBM might be detectable before symptom onset.


Assuntos
Neoplasias Encefálicas/sangue , Neoplasias Encefálicas/líquido cefalorraquidiano , Glioblastoma/sangue , Glioblastoma/líquido cefalorraquidiano , Proteômica/métodos , Animais , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/líquido cefalorraquidiano , Proteínas Sanguíneas/análise , Proteínas do Líquido Cefalorraquidiano/análise , Vesículas Extracelulares/patologia , Feminino , Masculino , Camundongos Endogâmicos C57BL , Neoplasias Experimentais/sangue , Neoplasias Experimentais/líquido cefalorraquidiano , Neoplasias Experimentais/patologia , Fluxo de Trabalho
10.
Clin Epigenetics ; 13(1): 145, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34315505

RESUMO

BACKGROUND: Increasing evidence linking epigenetic mechanisms and different diseases, including cancer, has prompted in the last 15 years the investigation of histone post-translational modifications (PTMs) in clinical samples. Methods allowing the isolation of histones from patient samples followed by the accurate and comprehensive quantification of their PTMs by mass spectrometry (MS) have been developed. However, the applicability of these methods is limited by the requirement for substantial amounts of material. RESULTS: To address this issue, in this study we streamlined the protein extraction procedure from low-amount clinical samples and tested and implemented different in-gel digestion strategies, obtaining a protocol that allows the MS-based analysis of the most common histone PTMs from laser microdissected tissue areas containing as low as 1000 cells, an amount approximately 500 times lower than what is required by available methods. We then applied this protocol to breast cancer patient laser microdissected tissues in two proof-of-concept experiments, identifying differences in histone marks in heterogeneous regions selected by either morphological evaluation or MALDI MS imaging. CONCLUSIONS: These results demonstrate that analyzing histone PTMs from very small tissue areas and detecting differences from adjacent tumor regions is technically feasible. Our method opens the way for spatial epi-proteomics, namely the investigation of epigenetic features in the context of tissue and tumor heterogeneity, which will be instrumental for the identification of novel epigenetic biomarkers and aberrant epigenetic mechanisms.


Assuntos
Histonas/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/genética , Linhagem Celular Tumoral/efeitos dos fármacos , Metilação de DNA , Histonas/genética , Humanos , Proteômica/métodos , Proteômica/estatística & dados numéricos
11.
Metabolites ; 11(4)2021 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-33919525

RESUMO

Atherosclerosis is characterized by fatty plaques in large and medium sized arteries. Their rupture can causes thrombi, occlusions of downstream vessels and adverse clinical events. The investigation of atherosclerotic plaques is made difficult by their highly heterogeneous nature. Here we propose a spatially resolved approach based on matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging to investigate lipids in specific regions of atherosclerotic plaques. The method was applied to a small dataset including symptomatic and asymptomatic human carotid atherosclerosis plaques. Tissue sections of symptomatic and asymptomatic human carotid atherosclerotic plaques were analyzed by MALDI mass spectrometry imaging (MALDI MSI) of lipids, and adjacent sections analyzed by histology and immunofluorescence. These multimodal datasets were used to compare the lipid profiles of specific histopathological regions within the plaque. The lipid profiles of macrophage-rich regions and intimal vascular smooth muscle cells exhibited the largest changes associated with plaque outcome. Macrophage-rich regions from symptomatic lesions were found to be enriched in sphingomyelins, and intimal vascular smooth muscle cells of symptomatic plaques were enriched in cholesterol and cholesteryl esters. The proposed method enabled the MALDI MSI analysis of specific regions of the atherosclerotic lesion, confirming MALDI MSI as a promising tool for the investigation of histologically heterogeneous atherosclerotic plaques.

12.
Int J Mol Sci ; 22(6)2021 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-33799461

RESUMO

Small extracellular vesicles have been intensively studied as a source of biomarkers in neurodegenerative disorders. The possibility to isolate neuron-derived small extracellular vesicles (NDsEV) from blood represents a potential window into brain pathological processes. To date, the absence of sensitive NDsEV isolation and full proteome characterization methods has meant their protein content has been underexplored, particularly for individual patients. Here, we report a rapid method based on an immunoplate covalently coated with mouse monoclonal anti-L1CAM antibody for the isolation and the proteome characterization of plasma-NDsEV from individual Parkinson's disease (PD) patients. We isolated round-shaped vesicles with morphological characteristics consistent with exosomes. On average, 349 ± 38 protein groups were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis, 20 of which are annotated in the Human Protein Atlas as being highly expressed in the brain, and 213 were shared with a reference NDsEV dataset obtained from cultured human neurons. Moreover, this approach enabled the identification of 23 proteins belonging to the Parkinson disease KEGG pathway, as well as proteins previously reported as PD circulating biomarkers.


Assuntos
Biomarcadores/sangue , Vesículas Extracelulares/genética , Doença de Parkinson/sangue , Proteoma/genética , Cromatografia Líquida , Exossomos/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Neurônios/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/patologia , Proteômica , Espectrometria de Massas em Tandem
13.
Front Cell Neurosci ; 14: 606142, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33362472

RESUMO

Neuronal hyperexcitability often results from an unbalance between excitatory and inhibitory neurotransmission, but the synaptic alterations leading to enhanced seizure propensity are only partly understood. Taking advantage of a mouse model of neocortical epilepsy, we used a combination of photoconversion and electron microscopy to assess changes in synaptic vesicles pools in vivo. Our analyses reveal that epileptic networks show an early onset lengthening of active zones at inhibitory synapses, together with a delayed spatial reorganization of recycled vesicles at excitatory synapses. Proteomics of synaptic content indicate that specific proteins were increased in epileptic mice. Altogether, our data reveal a complex landscape of nanoscale changes affecting the epileptic synaptic release machinery. In particular, our findings show that an altered positioning of release-competent vesicles represent a novel signature of epileptic networks.

14.
Sci Rep ; 10(1): 20498, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33235327

RESUMO

Longitudinal analysis of disease models enables the molecular changes due to disease progression or therapeutic intervention to be better resolved. Approximately 75 µl of serum can be drawn from a mouse every 14 days. To date no methods have been reported that are able to analyze the proteome of small extracellular vesicles (sEV's) from such low serum volumes. Here we report a method for the proteomics analysis of sEV's from 50 µl of serum. Two sEV isolation procedures were first compared; precipitation based purification (PPT) and size exclusion chromatography (SEC). The methodological comparison confirmed that SEC led to purer sEV's both in terms of size and identified proteins. The procedure was then scaled down and the proteolytic digestion further optimized. The method was then applied to a longitudinal study of serum-sEV proteome changes in a glioblastoma multiforme (GBM) mouse model. Serum was collected at multiple time points, sEV's isolated and their proteins analyzed. The protocol enabled 274 protein groups to be identified and quantified. The longitudinal analysis revealed 25 deregulated proteins in GBM serum sEV's including proteins previously shown to be associated with GBM progression and metastasis (Myh9, Tln-1, Angpt1, Thbs1).


Assuntos
Neoplasias Encefálicas/sangue , Vesículas Extracelulares/metabolismo , Glioblastoma/sangue , Proteômica , Animais , Neoplasias Encefálicas/patologia , Cromatografia em Gel , Modelos Animais de Doenças , Vesículas Extracelulares/ultraestrutura , Glioblastoma/patologia , Estudos Longitudinais , Camundongos Endogâmicos C57BL , Proteólise
15.
Lab Invest ; 100(9): 1252-1261, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32341520

RESUMO

Myxoid liposarcoma (MLS) is the second most common subtype of liposarcoma, accounting for ~6% of all sarcomas. MLS is characterized by a pathognomonic FUS-DDIT3, or rarely EWSR1-DDIT3, gene fusion. The presence of ≥5% hypercellular round cell areas is associated with a worse prognosis for the patient and is considered high grade. The prognostic significance of areas with moderately increased cellularity (intermediate) is currently unknown. Here we have applied matrix-assisted laser desorption/ionization mass spectrometry imaging to analyze the spatial distribution of N-linked glycans on an MLS microarray in order to identify molecular markers for tumor progression. Comparison of the N-glycan profiles revealed that increased relative abundances of high-mannose type glycans were associated with tumor progression. Concomitantly, an increase of the average number of mannoses on high-mannose glycans was observed. Although overall levels of complex-type glycans decreased, an increase of tri- and tetra-antennary N-glycans was observed with morphological tumor progression and increased tumor histological grade. The high abundance of tri-antennary N-glycan species was also associated with poor disease-specific survival. These findings mirror recent observations in colorectal cancer, breast cancer, ovarian cancer, and cholangiocarcinoma, and are in line with a general role of high-mannose glycans and higher-antennary complex-type glycans in cancer progression.


Assuntos
Lipossarcoma Mixoide/metabolismo , Polissacarídeos/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas em Tandem/métodos , Adulto , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Lipossarcoma Mixoide/genética , Lipossarcoma Mixoide/patologia , Masculino , Gradação de Tumores , Proteínas de Fusão Oncogênica/genética , Proteínas Repressoras/genética
16.
Bioinformatics ; 36(11): 3618-3619, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32108859

RESUMO

SUMMARY: Mass spectrometry imaging (MSI) can reveal biochemical information directly from a tissue section. MSI generates a large quantity of complex spectral data which is still challenging to translate into relevant biochemical information. Here, we present rMSIproc, an open-source R package that implements a full data processing workflow for MSI experiments performed using TOF or FT-based mass spectrometers. The package provides a novel strategy for spectral alignment and recalibration, which allows to process multiple datasets simultaneously. This enables to perform a confident statistical analysis with multiple datasets from one or several experiments. rMSIproc is designed to work with files larger than the computer memory capacity and the algorithms are implemented using a multi-threading strategy. rMSIproc is a powerful tool able to take full advantage of modern computer systems to completely develop the whole MSI potential. AVAILABILITY AND IMPLEMENTATION: rMSIproc is freely available at https://github.com/prafols/rMSIproc. CONTACT: pere.rafols@urv.cat. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Software , Sistemas Computacionais , Espectrometria de Massas , Fluxo de Trabalho
17.
Front Oncol ; 9: 547, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31297336

RESUMO

Trastuzumab is an effective therapeutic treatment for Her2-like breast cancer; despite this most of these tumors develop resistance to therapy due to specific gene mutations or alterations in gene expression. Understanding the mechanisms of resistance to Trastuzumab could be a useful tool in order to identify combinations of drugs that elude resistance and allow a better response for the treated patients. Twelve primary biopsies of Her2+/hormone receptor negative (ER-/PgR-) breast cancer patients were selected based on the specific response to neoadjuvant therapy with Trastuzumab and their whole exome was sequenced leading to the identification of 18 informative gene mutations that discriminate patients selectively based on response to treatment. Among these genes, we focused on the study of the ANKRD44 gene to understand its role in the mechanism of resistance to Trastuzumab. The ANKRD44 gene was silenced in Her2-like breast cancer cell line (BT474), obtaining a partially Trastuzumab-resistant breast cancer cell line that constitutively activates the NF-kb protein via the TAK1/AKT pathway. Following this activation an increase in the level of glycolysis in resistant cells is promoted, also confirmed by the up-regulation of the LDHB protein and by an increased TROP2 protein expression, found generally associated with aggressive tumors. These results allow us to consider the ANKRD44 gene as a potential gene involved in Trastuzumab resistance.

18.
Mol Cell Proteomics ; 18(6): 1227-1241, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30926673

RESUMO

Krabbe disease is a rare, childhood lysosomal storage disorder caused by a deficiency of galactosylceramide beta-galactosidase (GALC). The major effect of GALC deficiency is the accumulation of psychosine in the nervous system and widespread degeneration of oligodendrocytes and Schwann cells, causing rapid demyelination. The molecular mechanisms of Krabbe disease are not yet fully elucidated and a definite cure is still missing. Here we report the first in-depth characterization of the proteome of the Twitcher mouse, a spontaneous mouse model of Krabbe disease, to investigate the proteome changes in the Central and Peripheral Nervous System. We applied a TMT-based workflow to compare the proteomes of the corpus callosum, motor cortex and sciatic nerves of littermate homozygous Twitcher and wild-type mice. More than 400 protein groups exhibited differences in expression and included proteins involved in pathways that can be linked to Krabbe disease, such as inflammatory and defense response, lysosomal proteins accumulation, demyelination, reduced nervous system development and cell adhesion. These findings provide new insights on the molecular mechanisms of Krabbe disease, representing a starting point for future functional experiments to study the molecular pathogenesis of Krabbe disease. Data are available via ProteomeXchange with identifier PXD010594.


Assuntos
Sistema Nervoso Central/metabolismo , Leucodistrofia de Células Globoides/metabolismo , Sistema Nervoso Periférico/metabolismo , Proteômica/métodos , Animais , Sistema Nervoso Central/patologia , Modelos Animais de Doenças , Feminino , Ontologia Genética , Masculino , Camundongos , Sistema Nervoso Periférico/patologia , Análise de Componente Principal , Proteoma/metabolismo
19.
J Proteome Res ; 18(1): 557-564, 2019 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30484663

RESUMO

The identification of molecular ions produced by MALDI or ESI strongly relies on their fragmentation to structurally informative fragments. The widely diffused fragmentation techniques for ESI multiply charged ions are either incompatible (ECD and ETD) or show lower efficiency (CID, HCD), with the predominantly singly charged peptide and protein ions formed by MALDI. In-source decay has been successfully adopted to sequence MALDI-generated ions, but it further increases spectral complexity, and it is not compatible with mass-spectrometry imaging. Excellent UVPD performances, in terms of number of fragment ions and sequence coverage, has been demonstrated for electrospray ionization for multiple proteomics applications. UVPD showed a much lower charge-state dependence, and so protein ions produced by MALDI may exhibit equal propensity to fragment. Here we report UVPD implementation on an Orbitrap Q-Exactive Plus mass spectrometer equipped with an ESI/EP-MALDI. UVPD of MALDI-generated ions was benchmarked against MALDI-ISD, MALDI-HCD, and ESI-UVPD. MALDI-UVPD outperformed MALDI-HCD and ISD, efficiently sequencing small proteins ions. Moreover, the singly charged nature of MALDI-UVPD avoids the bioinformatics challenges associated with highly congested ESI-UVPD mass spectra. Our results demonstrate the ability of UVPD to further improve tandem mass spectrometry capabilities for MALDI-generated protein ions. Data are available via ProteomeXchange with identifier PXD011526.


Assuntos
Proteínas/análise , Proteômica/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas em Tandem/instrumentação , Raios Ultravioleta , Benchmarking , Íons , Fragmentos de Peptídeos/química , Proteínas/efeitos da radiação , Proteômica/normas
20.
Proteomics Clin Appl ; 13(1): e1800137, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30580496

RESUMO

SCOPE: In biomedical research, mass spectrometry imaging (MSI) can obtain spatially-resolved molecular information from tissue sections. Especially matrix-assisted laser desorption/ionization (MALDI) MSI offers, depending on the type of matrix, the detection of a broad variety of molecules ranging from metabolites to proteins, thereby facilitating the collection of multilevel molecular data. Lately, integrative clustering techniques have been developed that make use of the complementary information of multilevel molecular data in order to better stratify patient cohorts, but which have not yet been applied in the field of MSI. MATERIALS AND METHODS: In this study, the potential of integrative clustering is investigated for multilevel molecular MSI data to subdivide cancer patients into different prognostic groups. Metabolomic and peptidomic data are obtained by MALDI-MSI from a tissue microarray containing material of 46 esophageal cancer patients. The integrative clustering methods Similarity Network Fusion, iCluster, and moCluster are applied and compared to non-integrated clustering. CONCLUSION: The results show that the combination of multilevel molecular data increases the capability of integrative algorithms to detect patient subgroups with different clinical outcome, compared to the single level or concatenated data. This underlines the potential of multilevel molecular data from the same subject using MSI for subsequent integrative clustering.


Assuntos
Imagem Molecular , Satisfação do Paciente , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Análise por Conglomerados , Humanos , Integração de Sistemas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...