Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Reports ; 11(4): 869-882, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30197120

RESUMO

Understanding the cellular properties controlling neural stem and progenitor cell (NSPC) fate choice will improve their therapeutic potential. The electrophysiological measure whole-cell membrane capacitance reflects fate bias in the neural lineage but the cellular properties underlying membrane capacitance are poorly understood. We tested the hypothesis that cell surface carbohydrates contribute to NSPC membrane capacitance and fate. We found NSPCs differing in fate potential express distinct patterns of glycosylation enzymes. Screening several glycosylation pathways revealed that the one forming highly branched N-glycans differs between neurogenic and astrogenic populations of cells in vitro and in vivo. Enhancing highly branched N-glycans on NSPCs significantly increases membrane capacitance and leads to the generation of more astrocytes at the expense of neurons with no effect on cell size, viability, or proliferation. These data identify the N-glycan branching pathway as a significant regulator of membrane capacitance and fate choice in the neural lineage.


Assuntos
Linhagem da Célula , Membrana Celular/metabolismo , Fenômenos Eletrofisiológicos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Polissacarídeos/metabolismo , Acetilglucosamina/metabolismo , Animais , Astrócitos/citologia , Encéfalo/citologia , Diferenciação Celular , Proliferação de Células , Tamanho Celular , Sobrevivência Celular , Fucose/metabolismo , Regulação da Expressão Gênica , Glicosilação , Camundongos , Ácido N-Acetilneuramínico/metabolismo , Neurogênese , Nicho de Células-Tronco
2.
Sci Rep ; 5: 8499, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25686615

RESUMO

Neural stem and progenitor cell (NSPC) fate is strongly influenced by mechanotransduction as modulation of substrate stiffness affects lineage choice. Other types of mechanical stimuli, such as stretch (tensile strain), occur during CNS development and trauma, but their consequences for NSPC differentiation have not been reported. We delivered a 10% static equibiaxial stretch to NSPCs and examined effects on differentiation. We found static stretch specifically impacts NSPC differentiation into oligodendrocytes, but not neurons or astrocytes, and this effect is dependent on particular extracellular matrix (ECM)-integrin linkages. Generation of oligodendrocytes from NSPCs was reduced on laminin, an outcome likely mediated by the α6 laminin-binding integrin, whereas similar effects were not observed for NSPCs on fibronectin. Our data demonstrate a direct role for tensile strain in dictating the lineage choice of NSPCs and indicate the dependence of this phenomenon on specific substrate materials, which should be taken into account for the design of biomaterials for NSPC transplantation.


Assuntos
Diferenciação Celular , Matriz Extracelular , Células-Tronco Neurais/citologia , Estresse Mecânico , Animais , Células Cultivadas , Integrinas/metabolismo , Laminina/metabolismo , Camundongos , Oligodendroglia/citologia , Ligação Proteica
3.
Biomicrofluidics ; 8(6): 064106, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25553183

RESUMO

Dielectrophoresis (DEP) has proven an invaluable tool for the enrichment of populations of stem and progenitor cells owing to its ability to sort cells in a label-free manner and its biological safety. However, DEP separation devices have suffered from a low throughput preventing researchers from undertaking studies requiring large numbers of cells, such as needed for cell transplantation. We developed a microfluidic device designed for the enrichment of stem and progenitor cell populations that sorts cells at a rate of 150,000 cells/h, corresponding to an improvement in the throughput achieved with our previous device designs by over an order of magnitude. This advancement, coupled with data showing the DEP-sorted cells retain their enrichment and differentiation capacity when expanded in culture for periods of up to 2 weeks, provides sufficient throughput and cell numbers to enable a wider variety of experiments with enriched stem and progenitor cell populations. Furthermore, the sorting devices presented here provide ease of setup and operation, a simple fabrication process, and a low associated cost to use that makes them more amenable for use in common biological research laboratories. To our knowledge, this work represents the first to enrich stem cells and expand them in culture to generate transplantation-scale numbers of differentiation-competent cells using DEP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...