Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 29(22): 36469-36486, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34809058

RESUMO

Laser machining involves many complex processes, especially when using femtosecond pulses due to the high peak intensities involved. Whilst conventional modelling, such as those based on photon-electron interactions, can be used to predict the appearance of the surface after machining, this generally becomes unfeasible for micron-scale features and larger. The authors have previously demonstrated that neural networks can simulate the appearance of a sample when machined using different spatial intensity profiles. However, using a neural network to model the reverse of this process is challenging, as diffractive effects mean that any particular sample appearance could have been produced by a large number of beam shape variations. Neural networks struggle with such one-to-many mappings, and hence a different approach is needed. Here, we demonstrate that this challenge can be solved by using a neural network loss function that is a separate neural network. Here, we therefore present a neural network that can identify the spatial intensity profiles needed, for multiple laser pulses, to produce a specific depth profile in 5 µm thick electroless nickel.

2.
Opt Express ; 28(10): 14627-14637, 2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32403500

RESUMO

Femtosecond laser machining is a complex process, owing to the high peak intensities involved. Modelling approaches for the prediction of final sample quality based on photon-atom interactions are therefore challenging to extrapolate up to the microscale and beyond. The problem is compounded when multiple exposures are used to produce a final structure, where surface modifications from previous exposures must be taken into consideration. Neural network approaches allow for the automatic creation of a model that accounts for these challenging processes, without any physical knowledge of the processes being programmed by a specialist. We present such a network for the prediction of surface quality for multi-exposure femtosecond machining on a 5µm electroless nickel layer deposited on copper, where each pulse is uniquely spatially shaped using a spatial light modulator. This neural network modelling method accurately predicts the surface profile after three, sequential, overlapping exposures of dissimilar intensity patterns. It successfully reproduces such effects as the sub-diffraction limit machining feasible with multiple exposures, and the smoothing effect on edge-burr from previous exposures expected in multi-exposure laser machining.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...