Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drug Chem Toxicol ; 45(5): 2185-2192, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34251950

RESUMO

Prolonged seizures are a hallmark feature of intoxication with anticholinesterase nerve agents such as soman. While benzodiazepine drugs are typically used to control these seizures, studies in both rats and guinea pigs have shown that potent, centrally acting anticholinergic drugs such as scopolamine can also terminate such seizures. The present study was performed to determine if scopolamine could produce similar anticonvulsant effects in a nonhuman primate model of soman intoxication. Adult male African green monkeys, implanted with telemetry devices to record cortical electroencephalographic activity, were pretreated with pyridostigmine (0.02 mg/kg, intramuscularly [im]) and 40 min later challenged with 15 µg/kg (im) of the nerve agent soman. One min after soman exposure the animals were treated with atropine (0.4 mg/kg, im) and the oxime 2-PAM (25.7 mg/kg, im). One min after the start of seizure activity the animals were administered scopolamine (0.01-0.1 mg/kg, im), using an up-down dosing design over successive animals. Scopolamine was highly effective in stopping soman-induced seizures with an ED50 = 0.0312 mg/kg (0.021-0.047 mg/kg = 95% confidence limits). Seizure control was rapid, with all epileptiform activity stopping on average 21.7 min after scopolamine treatment. A separate pK study showed that scopolamine absorption peaked approximately 10 min after im administration and a dose of 0.032 mg/kg produced maximum plasma levels of 17.62 ng/ml. The results show that scopolamine exerts potent and rapid anticonvulsant action against soman-induced seizures and that it may serve as a valuable adjunct to current antidote treatments for nerve agent intoxication.


Assuntos
Agentes Neurotóxicos , Soman , Animais , Anticonvulsivantes/toxicidade , Chlorocebus aethiops , Inibidores da Colinesterase/toxicidade , Eletroencefalografia , Cobaias , Masculino , Agentes Neurotóxicos/toxicidade , Ratos , Escopolamina/toxicidade , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Convulsões/prevenção & controle , Soman/uso terapêutico , Soman/toxicidade
2.
Neuroscience ; 463: 143-158, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33836243

RESUMO

Benzodiazepines are the primary treatment option for organophosphate (OP)-induced status epilepticus (SE), but these antiseizure drugs (ASDs) lose efficacy as treatment is delayed. In the event of a mass civilian or military exposure, significant treatment delays are likely. New ASDs that combat benzodiazepine-resistant, OP-induced SE are critically needed, particularly if they can be efficacious after a long treatment delay. This study evaluated the efficacy of the Kv7 channel modulator, retigabine, as a novel therapy for OP-induced SE. Adult, male rats were exposed to soman or diisopropyl fluorophosphate (DFP) to elicit SE and monitored by electroencephalogram (EEG) recording. Retigabine was administered alone or adjunctive to midazolam (MDZ) at delays of 20- or 40-min in the soman model, and 60-min in the DFP model. Following EEG recordings, rats were euthanized and brain tissue was collected for Fluoro-Jade B (FJB) staining to quantify neuronal death. In the DFP model, MDZ + 15 mg/kg retigabine suppressed seizure activity and was neuroprotective. In the soman model, MDZ + 30 mg/kg retigabine suppressed seizures at 20- and 40-min delays. Without MDZ, 15 mg/kg retigabine provided partial antiseizure and neuroprotectant efficacy in the DFP model, while 30 mg/kg without MDZ failed to attenuate soman-induced SE. At 60 mg/kg, retigabine without MDZ strongly reduced seizure activity and neuronal degeneration against soman-induce SE. This study demonstrates the antiseizure and neuroprotective efficacy of retigabine against OP-induced SE. Our data suggest retigabine could be a useful adjunct to standard-of-care and has potential for use in the absence of MDZ.


Assuntos
Preparações Farmacêuticas , Estado Epiléptico , Animais , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Carbamatos , Humanos , Masculino , Organofosfatos/uso terapêutico , Fenilenodiaminas , Ratos , Ratos Sprague-Dawley , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico , Tempo para o Tratamento
3.
Neurotoxicology ; 83: 14-27, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33352274

RESUMO

The increasing number of cases involving the use of nerve agents as deadly weapons has spurred investigation into the molecular mechanisms underlying nerve agent-induced pathology. The highly toxic nature of nerve agents restrict their use in academic research laboratories. Less toxic organophosphorus (OP) based agents including diisopropylfluorophosphate (DFP) are used as surrogates in academic research laboratories to mimic nerve agent poisoning. However, neuropathology resulting from DFP-induced status epilepticus (SE) has not been compared directly to neuropathology observed following nerve agent poisoning in the same study. Here, the hypothesis that neuropathology measured four days after SE is the same for rats exposed to DFP and soman was tested. Adult Sprague-Dawley rats were injected with soman or DFP to induce SE. Cortical electroencephalography (EEG) was recorded prior to and during soman-induced SE. EEG power analysis of rats administered soman revealed prolonged electrographic SE similar to that of rats that endure uninterrupted SE following injection of DFP. Rats that experienced soman-induced SE displayed less hippocampal neuroinflammation and gliosis compared to rats administered DFP. Seizure-induced weight change, blood-brain barrier (BBB) leakiness and neurodegeneration in most seizure sensitive limbic brain regions were similar for rats that endured SE following soman or DFP. The amalgamated pathology score calculated by combining pathological measures (weight loss, hippocampal neuroinflammation, gliosis, BBB integrity and neurodegeneration) was similar in rats administered the OP agents. These findings support use of the rat DFP model of SE as a suitable surrogate for investigating some, but not all delayed consequences produced by nerve agents.


Assuntos
Encéfalo/patologia , Encefalite/patologia , Isoflurofato , Soman , Estado Epiléptico/patologia , Animais , Barreira Hematoencefálica/patologia , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Ondas Encefálicas , Morte Celular , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Eletroencefalografia , Encefalite/induzido quimicamente , Encefalite/metabolismo , Encefalite/fisiopatologia , Gliose , Masculino , Ratos Sprague-Dawley , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/metabolismo , Estado Epiléptico/fisiopatologia , Fatores de Tempo , Redução de Peso
4.
Epilepsy Res ; 162: 106320, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32182542

RESUMO

PURPOSE: To develop and characterize a mouse model of spontaneous recurrent seizures following nerve agent-induced status epilepticus (SE) and test the efficacy of existing antiepileptic drugs. METHODS: SE was induced in telemeterized male C57Bl6/J mice by soman exposure, and electroencephalographic activity was recorded for 4-6 weeks. Mice were treated with antiepileptic drugs (levetiracetam, valproic acid, phenobarbital) or corresponding vehicles for 14 d after exposure, followed by 14 d of drug washout. Survival, body weight, seizure characteristics, and histopathology were used to characterize the acute and chronic effects of nerve agent exposure and to evaluate the efficacy of treatments in mitigating or preventing neurological effects. RESULTS: Spontaneous recurrent seizures manifested in all survivors, but the number and frequency of seizures varied considerably among mice. In untreated mice, seizures became longer over time. Moderate to severe histopathology was observed in the amygdala, piriform cortex, and CA1. Levetiracetam provided modest improvements in neurological parameters such as reduced spike rate and improved histopathology scores, whereas valproic acid and phenobarbital were largely ineffective. CONCLUSIONS: This model of post-SE spontaneous recurrent seizures differs from other experimental models in the brief latency to seizure development, the occurrence of seizures in 100 % of exposed animals, and the lack of damage to CA4/dentate gyrus. It may serve as a useful tool for rapidly and efficiently screening novel therapies that would be effective against severe epilepsy cases.


Assuntos
Anticonvulsivantes/uso terapêutico , Levetiracetam/uso terapêutico , Agentes Neurotóxicos/efeitos adversos , Fenobarbital/uso terapêutico , Soman/efeitos adversos , Estado Epiléptico/diagnóstico , Estado Epiléptico/tratamento farmacológico , Ácido Valproico/uso terapêutico , Animais , Modelos Animais de Doenças , Camundongos , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/fisiopatologia
5.
Neurotoxicology ; 79: 58-66, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32220603

RESUMO

Multiple recent instances of nerve agent (NA) exposure in civilian populations have occurred, resulting in a variety of negative effects and lethality in both adult and pediatric populations. Seizures are a prominent effect of NAs that can result in neurological damage and contribute to their lethality. Current anticonvulsant treatments for NAs are approved for adults, but no approved pediatric treatments exist. Further, the vast majority of NA-related research in animals has been conducted in adult male subjects. There is a need for research that includes female and pediatric populations in testing. In this project, adult and pediatric male and female rats were challenged with sarin or VX and then treated with fosphenytoin, levetiracetam, or propofol. In this study, fosphenytoin and levetiracetam failed to terminate seizure activity when animals were treated 5 min after seizure onset. Propofol was effective, exhibiting high efficacy and potency for terminating seizure activity quickly in pediatric and adult animals, suggesting it may be an effective anticonvulsant for NA-induced seizures in pediatric populations.


Assuntos
Anticonvulsivantes/farmacologia , Encéfalo/efeitos dos fármacos , Levetiracetam/farmacologia , Fenitoína/análogos & derivados , Propofol/farmacologia , Estado Epiléptico/prevenção & controle , Fatores Etários , Animais , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Feminino , Masculino , Compostos Organotiofosforados , Fenitoína/farmacologia , Ratos Sprague-Dawley , Sarina , Fatores Sexuais , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/fisiopatologia
6.
Neuroscience ; 425: 280-300, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31783100

RESUMO

Organophosphorus (OP) compounds are deadly chemicals that exert their intoxicating effects through the irreversible inhibition of acetylcholinesterase (AChE). In addition to an excess of peripheral ailments, OP intoxication induces status epilepticus (SE) which if left untreated may lead to permanent brain damage or death. Benzodiazepines are typically the primary therapies for OP-induced SE, but these drugs lose efficacy as treatment time is delayed. The CounterACT Neurotherapeutic Screening (CNS) Program was therefore established by the National Institutes of Health (NIH) to discover novel treatments that may be administered adjunctively with the currently approved medical countermeasures for OP-induced SE in a delayed treatment scenario. The CNS program utilizes in vivo EEG recordings and Fluoro-JadeB (FJB) histopathology in two established rat models of OP-induced SE, soman (GD) and diisopropylfluorophosphate (DFP), to evaluate the anticonvulsant and neuroprotectant efficacy of novel adjunct therapies when administered at 20 or 60 min after the induction of OP-induced SE. Here we report the results of multiple compounds that have previously shown anticonvulsant or neuroprotectant efficacy in other models of epilepsy or trauma. Drugs tested were ganaxolone, diazoxide, bumetanide, propylparaben, citicoline, MDL-28170, and chloroquine. EEG analysis revealed that ganaxolone demonstrated the most robust anticonvulsant activity, whereas all other drugs failed to attenuate ictal activity in both models of OP-induced SE. FJB staining demonstrated that none of the tested drugs had widespread neuroprotective abilities. Overall these data suggest that neurosteroids may represent the most promising anticonvulsant option for OP-induced SE out of the seven unique mechanisms tested here. Additionally, these results suggest that drugs that provide significant neuroprotection from OP-induced SE without some degree of anticonvulsant activity are elusive, which further highlights the necessity to continue screening novel adjunct treatments through the CNS program.


Assuntos
Anticonvulsivantes/farmacologia , Epilepsia/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Convulsões/tratamento farmacológico , Animais , Benzodiazepinas/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Inibidores da Colinesterase/farmacologia , Epilepsia/patologia , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Compostos Organofosforados/farmacologia , Ratos Sprague-Dawley , Convulsões/induzido quimicamente
7.
Front Pharmacol ; 10: 560, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31178732

RESUMO

Seizures induced by organophosphorus nerve agent exposure become refractory to treatment with benzodiazepines because these drugs engage synaptic γ-aminobutyric acid-A receptors (GABAARs) that rapidly internalize during status epilepticus (SE). Extrasynaptic GABAARs, such as those containing α4ß3δ subunits, are a putative pharmacological target to comprehensively manage nerve agent-induced seizures since they do not internalize during SE and are continuously available for activation. Neurosteroids related to allopregnanolone have been tested as a possible replacement for benzodiazepines because they target both synaptic and extrasynaptic GABAARs receptors. A longer effective treatment window, extended treatment efficacy, and enhanced neuroprotection represent significant advantages of neurosteroids over benzodiazepines. However, neurosteroid use is limited by poor physicochemical properties arising from the intrinsic requirement of the pregnane steroid core structure for efficacy rendering drug formulation problematic. We tested a non-steroidal enaminone GABAAR modulator that interacts with both synaptic and extrasynaptic GABAARs on a binding site distinct from neurosteroids or benzodiazepines for efficacy to control electrographic SE induced by diisopropyl fluorophosphate or soman intoxication in rats. Animals were treated with standard antidotes, and experimental therapeutic treatment was given following 1 h (diisopropyl fluorophosphate model) or 20 min (soman model) after SE onset. We found that the enaminone 2-261 had an extended duration of seizure termination (>10 h) in the diisopropyl fluorophosphate intoxication model in the presence or absence of midazolam (MDZ). 2-261 also moderately potentiated MDZ in the soman-induced seizure model but had limited efficacy as a stand-alone anticonvulsant treatment due to slow onset of action. 2-261 significantly reduced neuronal death in brain areas associated with either diisopropyl fluorophosphate- or soman-induced SE. 2-261 represents an alternate chemical template from neurosteroids for enhancing extrasynaptic α4ß3δ GABAAR activity to reverse SE from organophosphorous intoxication.

8.
Artigo em Inglês | MEDLINE | ID: mdl-30790623

RESUMO

INTRODUCTION: Organophosphorus nerve agents (OPNAs) irreversibly block acetylcholinesterase activity, resulting in accumulation of excess acetylcholine at neural synapses, which can lead to a state of prolonged seizures known as status epilepticus (SE). Benzodiazepines, the current standard of care for SE, become less effective as latency to treatment increases. In a mass civilian OPNA exposure, concurrent trauma and limited resources would likely cause a delay in first response time. To address this issue, we have developed a rat model to test novel anticonvulsant/ neuroprotectant adjuncts at delayed time points. METHODS: For model development, adult male rats with cortical electroencephalographic (EEG) electrodes were exposed to soman and administered saline along with atropine, 2-PAM, and midazolam 5, 20, or 40 min after SE onset. We validated our model using three drugs: scopolamine, memantine, and phenobarbital. Using the same procedure outlined above, rats were given atropine, 2-PAM, midazolam and test treatment 20 min after SE onset. RESULTS: Using gamma power, delta power, and spike rate to quantify EEG activity, we found that scopolamine was effective, memantine was minimally effective, and phenobarbital had a delayed effect on terminating SE. Fluoro-Jade B staining was used to assess neuroprotection in five brain regions. Each treatment provided significant protection compared to saline + midazolam in at least two brain regions. DISCUSSION: Because our data agree with previously published studies on the efficacy of these compounds, we conclude that this model is a valid way to test novel anticonvulsants/ neuroprotectants for controlling benzodiazepine-resistant OPNA-induced SE and subsequent neuropathology.


Assuntos
Anticonvulsivantes/farmacologia , Benzodiazepinas/farmacologia , Memantina/farmacologia , Agentes Neurotóxicos/farmacologia , Fármacos Neuroprotetores/farmacologia , Fenobarbital/farmacologia , Escopolamina/farmacologia , Estado Epiléptico/tratamento farmacológico , Animais , Atropina/farmacologia , Encéfalo/efeitos dos fármacos , Eletroencefalografia/métodos , Masculino , Midazolam/farmacologia , Ratos , Ratos Sprague-Dawley , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Soman/farmacologia , Estado Epiléptico/induzido quimicamente
9.
Epilepsia ; 60(2): 315-321, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30615805

RESUMO

OBJECTIVES: Children and adults are likely to be among the casualties in a civilian nerve agent exposure. This study evaluated the efficacy of valnoctamide (racemic-VCD), sec-butylpropylacetamide (racemic-SPD), and phenobarbital for stopping nerve agent seizures in both immature and adult rats. METHODS: Female and male postnatal day (PND) 21, 28, and 70 (adult) rats, previously implanted with electroencephalography (EEG) electrodes were exposed to seizure-inducing doses of the nerve agents sarin or VX and EEG was recorded continuously. Five minutes after seizure onset, animals were treated with SPD, VCD, or phenobarbital. The up-down method was used over successive animals to determine the anticonvulsant median effective dose (ED50 ) of the drugs. RESULTS: SPD-ED50 values in the VX model were the following: PND21, 53 mg/kg (male) and 48 mg/kg (female); PND28, 108 mg/kg (male) and 43 mg/kg (female); and PND70, 101 mg/kg (male) and 40 mg/kg (female). SPD-ED50 values in the sarin model were the following: PND21, 44 mg/kg (male) and 28 mg/kg (female); PND28, 79 mg/kg (male) and 34 mg/kg (female); and PND70, 53 mg/kg (male) and 53 mg/kg (female). VCD-ED50 values in the VX model were the following: PND21, 34 mg/kg (male) and 43 mg/kg (female); PND28, 165 mg/kg (male) and 59 mg/kg (female); and PND70, 87 mg/kg (male) and 91 mg/kg (female). VCD-ED50 values in the sarin model were the following: PND21, 45 mg/kg (male), 48 mg/kg (female); PND28, 152 mg/kg (male) 79 mg/kg (female); and PND70, 97 mg/kg (male) 79 mg/kg (female). Phenobarbital-ED50 values in the VX model were the following: PND21, 43 mg/kg (male) and 18 mg/kg (female); PND28, 48 mg/kg (male) and 97 mg/kg (female). Phenobarbital-ED50 values in the sarin model were the following: PND21, 32 mg/kg (male) and 32 mg/kg (female); PND28, 58 mg/kg (male) and 97 mg/kg (female); and PND70, 65 mg/kg (female). SIGNIFICANCE: SPD and VCD demonstrated anticonvulsant activity in both immature and adult rats in the sarin- and VX-induced status epilepticus models. Phenobarbital was effective in immature rats, whereas in adult rats, higher doses were required that were accompanied by toxicity. Overall, significantly less drug was required to stop seizures in PND21 animals than in the older animals, and overall, males required higher amounts of drug than females.


Assuntos
Amidas/farmacologia , Convulsões/tratamento farmacológico , Estado Epiléptico/tratamento farmacológico , Ácido Valproico/análogos & derivados , Animais , Anticonvulsivantes/uso terapêutico , Criança , Modelos Animais de Doenças , Eletroencefalografia/métodos , Feminino , Humanos , Masculino , Agentes Neurotóxicos/farmacologia , Fenobarbital/uso terapêutico , Ratos , Ácido Valproico/farmacologia
10.
Toxicology ; 410: 10-15, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30172647

RESUMO

Genetics likely play a role in various responses to nerve agent (NA) exposure, as genetic background plays an important role in behavioral, neurological, and physiological responses. This study uses different mouse strains to identify if mouse strain differences in sarin exposure exist. In Experiment 1, basal levels of acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and carboxylesterase (CE) were measured in different strains of naïve mice to account for potential pharmacokinetic determinants of individual differences. In Experiment 2, median lethal dose (MLD) levels were estimated in 8 inbred mouse strains following subcutaneous (s.c.) administration of sarin. Few strain or sex differences in esterase activity levels were observed, with the exception of erythrocyte AChE activity in the C57BL/6J strain. Both sex and strain differences in toxicity were observed, with the most resistant strains being the BALB/cByJ and FVB/NJ strains and the most sensitive strain being the DBA/2J strain. These findings can be expanded to explore pathways involved in NA response, which may provide an avenue to develop therapeutics for preventing and treating the damaging effects of NA exposure.


Assuntos
Substâncias para a Guerra Química/toxicidade , Esterases/efeitos dos fármacos , Esterases/metabolismo , Camundongos Endogâmicos , Agentes Neurotóxicos/toxicidade , Sarina/toxicidade , Acetilcolinesterase/efeitos dos fármacos , Acetilcolinesterase/metabolismo , Animais , Butirilcolinesterase/efeitos dos fármacos , Butirilcolinesterase/metabolismo , Hidrolases de Éster Carboxílico/efeitos dos fármacos , Hidrolases de Éster Carboxílico/metabolismo , Inibidores da Colinesterase/toxicidade , Eritrócitos/efeitos dos fármacos , Eritrócitos/enzimologia , Feminino , Injeções Subcutâneas , Dose Letal Mediana , Masculino , Camundongos , Especificidade da Espécie
11.
Int J Toxicol ; 37(5): 352-363, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29879849

RESUMO

Oxime reactivators are critical antidotes after organophosphate pesticide or nerve agent poisoning, directly restoring the function of inhibited acetylcholinesterase. In the continuing search for more broad-spectrum acetylcholinesterase reactivators, this study evaluated one of the leading next-generation oxime reactivators: methoxime, (1,1'-trimethylene bis[4-(hydroxyimino)methyl]pyridinium dichloride (MMB-4). The pharmacokinetics of both salts of MMB-4 (dichloride [2Cl] and dimethanesulphonate [DMS]) were characterized across a range of relevant doses (19, 58, and 116 µmol/kg, intramuscular) in a nonhuman primate model (male African green monkeys), and only subtle differences were observed between the salts. Additionally, the behavioral and cardiovascular safety of these MMB-4 salts was compared directly to other available oximes (HI-6 2Cl, HI-6 DMS, and pyridine-2-aldoxime chloride (2-PAM Cl)) at comparable projected doses. Automated operant behavioral tests were used to examine attention, motivation, visual discrimination, concept execution, and fine motor coordination after high doses of all oxime salts, and of all oximes studied, only the highest dose of 2-PAM Cl (447 µmol/kg) disrupted behavioral performance. Likewise, the effects of a range of doses of MMB-4 2Cl or DMS, HI-6 2Cl or DMS, or 2-PAM Cl on cardiovascular parameters were measured in African green monkeys implanted with telemetry devices. Only a small transient decrease in pulse pressure was observed following administration of the highest dose of MMB-4 DMS (116 µmol/kg). Thus, MMB-4 salts, up to the 9× equivalent of a projected autoinjector dose in humans, did not produce behavioral or cardiovascular toxicity in African green monkeys in the current study, and the pharmacokinetic parameters were orderly and predictable.


Assuntos
Antídotos , Reativadores da Colinesterase , Oximas , Animais , Antídotos/farmacocinética , Antídotos/toxicidade , Comportamento Animal/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Chlorocebus aethiops , Comportamento de Escolha/efeitos dos fármacos , Reativadores da Colinesterase/sangue , Reativadores da Colinesterase/farmacocinética , Reativadores da Colinesterase/toxicidade , Frequência Cardíaca/efeitos dos fármacos , Masculino , Oximas/sangue , Oximas/farmacocinética , Oximas/toxicidade
12.
Toxicol Mech Methods ; 28(8): 563-572, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29768075

RESUMO

Mice and other rodents are typically utilized for chemical warfare nerve agent research. Rodents have large amounts of carboxylesterase in their blood, while humans do not. Carboxylesterase nonspecifically binds to and detoxifies nerve agent. The presence of this natural bioscavenger makes mice and other rodents poor models for studies identifying therapeutics to treat humans exposed to nerve agents. To obviate this problem, a serum carboxylesterase knockout (Es1 KO) mouse was created. In this study, Es1 KO and wild type (WT) mice were assessed for differences in gene expression, nerve agent (soman; GD) median lethal dose (MLD) values, and behavior prior to and following nerve agent exposure. No expression differences were detected between Es1 KO and WT mice in more than 34 000 mouse genes tested. There was a significant difference between Es1 KO and WT mice in MLD values, as the MLD for GD-exposed WT mice was significantly higher than the MLD for GD-exposed Es1 KO mice. Behavioral assessments of Es1 KO and WT mice included an open field test, a zero maze, a Barnes maze, and a sucrose preference test (SPT). While sex differences were observed in various measures of these tests, overall, Es1 KO mice behaved similarly to WT mice. The two genotypes also showed virtually identical neuropathological changes following GD exposure. Es1 KO mice appear to have an enhanced susceptibility to GD toxicity while retaining all other behavioral and physiological responses to this nerve agent, making the Es1 KO mouse a more human-like model for nerve agent research.


Assuntos
Comportamento Animal/efeitos dos fármacos , Hidrolases de Éster Carboxílico/sangue , Aprendizagem em Labirinto/efeitos dos fármacos , Agentes Neurotóxicos/toxicidade , Soman/toxicidade , Animais , Hidrolases de Éster Carboxílico/genética , Feminino , Perfilação da Expressão Gênica , Dose Letal Mediana , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transcriptoma/efeitos dos fármacos
13.
Neurotoxicology ; 66: 10-21, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29510177

RESUMO

Exposure to nerve agents (NAs) and other organophosphates (OPs) can initiate seizures that rapidly progress to status epilepticus (SE). While the electrographic and neuropathological sequelae of SE evoked by NAs and OPs have been characterized in adult rodents, they have not been adequately investigated in immature animals. In this study postnatal day (PND) 14, 21 and 28 rat pups, along with PND70 animals as adult controls, were exposed to NAs (sarin, VX) or another OP (diisopropylfluorophosphate, DFP). We then evaluated behavioral and electrographic (EEG) correlates of seizure activity, and performed neuropathology using Fluoro-Jade B. Although all immature rats exhibited behaviors that are often characterized as seizures, the incidence, duration, and severity of the electrographic seizure activity were age-dependent. No (sarin and VX) or brief (DFP) EEG seizure activity was evoked in PND14 rats, while SE progressively increased in severity as a function of age in PND21, 28 and 70 animals. Fluoro-Jade B staining was observed in multiple brain regions of animals that exhibited prolonged seizure activity. Neuronal injury in PND14 animals treated with DFP was lower than in older animals and absent in rats exposed to sarin or VX. In conclusion, we found that NAs and an OP provoked robust SE and neuronal injury similar to adults in PND21 and PND28, but not in PND14, rat pups. Convulsive behaviors were often present independent of EEG seizures and were unaccompanied by neuronal damage. These differential responses should be considered when investigating medical countermeasures for NA and OP exposure in pediatric populations.


Assuntos
Comportamento Animal/efeitos dos fármacos , Isoflurofato/toxicidade , Agentes Neurotóxicos/toxicidade , Compostos Organofosforados/toxicidade , Convulsões/induzido quimicamente , Convulsões/fisiopatologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Feminino , Masculino , Compostos Organotiofosforados/toxicidade , Sarina/toxicidade
14.
Epilepsy Res ; 141: 1-12, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29414381

RESUMO

Nerve agents are highly toxic chemicals that pose an imminent threat to soldiers and civilians alike. Nerve agent exposure leads to an increase in acetylcholine within the central nervous system, resulting in development of protracted seizures known as status epilepticus (SE). Currently, benzodiazepines are the standard of care for nerve agent-induced SE, but their efficacy quickly wanes as the time to treatment increases. Here, we examine the role of the α2-adrenoceptor in termination of nerve agent-induced SE using the highly specific agonist dexmedetomidine (DEX). Adult male rats were exposed to soman and entered SE as confirmed by electroencephalograph (EEG). We observed that administration of DEX in combination with the benzodiazepine midazolam (MDZ) 20 or 40 min after the onset of SE stopped seizures and returned processed EEG measurements to baseline levels. The protective effect of DEX was blocked by the α2-adrenoceptor antagonist atipamezole (ATI), but ATI failed to restore seizure activity after it was already halted by DEX in most cases, suggesting that α2-adrenoceptors may be involved in initiating SE cessation rather than merely suppressing seizure activity. Histologically, treatment with DEX + MDZ significantly reduced the number of dying neurons as measured by FluoroJade B in the amygdala, thalamus, and piriform cortex, but did not protect the hippocampus or parietal cortex even when SE was successfully halted. We conclude that DEX serves not just as a valuable potential addition to the anticonvulsant regimen for nerve agent exposure, but also as a tool for dissecting the neural circuitry that drives SE.


Assuntos
Anticonvulsivantes/uso terapêutico , Dexmedetomidina/uso terapêutico , Hipnóticos e Sedativos/uso terapêutico , Estado Epiléptico/tratamento farmacológico , Análise de Variância , Animais , Atropina/toxicidade , Benzodiazepinas/toxicidade , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Interações Medicamentosas , Eletroencefalografia , Masculino , Agentes Neurotóxicos/toxicidade , Ratos , Ratos Sprague-Dawley , Estado Epiléptico/induzido quimicamente , Fatores de Tempo
15.
Toxicology ; 393: 51-61, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29113833

RESUMO

Genetics likely play a role in various responses to nerve agent exposure, as genetic background plays an important role in behavioral, neurological, and physiological responses to environmental stimuli. Mouse strains or selected lines can be used to identify susceptibility based on background genetic features to nerve agent exposure. Additional genetic techniques can then be used to identify mechanisms underlying resistance and sensitivity, with the ultimate goal of developing more effective and targeted therapies. Here, we discuss the available literature on strain and selected line differences in cholinesterase activity levels and response to nerve agent-induced toxicity and seizures. We also discuss the available cholinesterase and toxicity literature across different non-human primate species. The available data suggest that robust genetic differences exist in cholinesterase activity, nerve agent-induced toxicity, and chemical-induced seizures. Available cholinesterase data suggest that acetylcholinesterase activity differs across strains, but are limited by the paucity of carboxylesterase data in strains and selected lines. Toxicity and seizures, two outcomes of nerve agent exposure, have not been fully evaluated for genetic differences, and thus further studies are required to understand baseline strain and selected line differences.


Assuntos
Substâncias para a Guerra Química/toxicidade , Patrimônio Genético , Animais , Primatas , Roedores , Especificidade da Espécie
16.
J Am Assoc Lab Anim Sci ; 56(6): 762-767, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29256371

RESUMO

In this study, we compared the plasma concentrations of meloxicam in pediatric rat pups (ages: 7, 14, 21, and 28 d) with those of young adult rats. Adult rats received 1.34 mg/kg SC meloxicam to determine the target peak plasma concentration (Cmax) for comparison with the pediatric animals. Pediatric rats received 1.34 mg/kg SC meloxicam, and in all age groups, Cmax met or exceeded that in adults (11.5 ±2.7 µg/mL). Plasma concentrations were similar between male and female pups within age groups, and peak plasma concentration was achieved more rapidly in rat pups than adults. The analgesic efficacy of this dose was not evaluated in this study.


Assuntos
Envelhecimento , Anti-Inflamatórios não Esteroides/farmacocinética , Ratos/fisiologia , Tiazinas/farmacocinética , Tiazóis/farmacocinética , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/sangue , Cálculos da Dosagem de Medicamento , Feminino , Humanos , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Masculino , Meloxicam , Ratos/sangue , Ratos Sprague-Dawley , Tiazinas/administração & dosagem , Tiazinas/sangue , Tiazóis/administração & dosagem , Tiazóis/sangue
17.
Epilepsy Behav ; 68: 22-30, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28109985

RESUMO

Organophosphorus nerve agents (OPNAs) are irreversible inhibitors of acetylcholinesterase that pose a serious threat to public health because of their use as chemical weapons. Exposure to high doses of OPNAs can dramatically potentiate cholinergic synaptic activity and cause status epilepticus (SE). Current standard of care for OPNA exposure involves treatment with cholinergic antagonists, oxime cholinesterase reactivators, and benzodiazepines. However, data from pre-clinical models suggest that OPNA-induced SE rapidly becomes refractory to benzodiazepines. Neuroactive steroids (NAS), such as allopregnanolone, retain anticonvulsant activity in rodent models of benzodiazepine-resistant SE, perhaps because they modulate a broader variety of GABAA receptor subtypes. SGE-516 is a novel, next generation NAS and a potent and selective GABAA receptor positive allosteric modulator (PAM). The present study first established that SGE-516 reduced electrographic seizures in the rat lithium-pilocarpine model of pharmacoresistant SE. Then the anticonvulsant activity of SGE-516 was investigated in the soman-intoxication model of OPNA-induced SE. SGE-516 (5.6, 7.5, and 10mg/kg, IP) significantly reduced electrographic seizure activity compared to control when administered 20min after SE onset. When 10mg/kg SGE-516 was administered 40min after SE onset, seizure activity was still significantly reduced compared to control. In addition, all cohorts of rats treated with SGE-516 exhibited significantly reduced neuronal cell death as measured by FluoroJade B immunohistochemistry. These data suggest synthetic NASs that positively modulate both synaptic and extrasynaptic GABAA receptors may be candidates for further study in the treatment of OPNA-induced SE.


Assuntos
Anticonvulsivantes/farmacologia , Morte Celular/efeitos dos fármacos , Moduladores GABAérgicos/farmacologia , Neurônios/efeitos dos fármacos , Neurotransmissores/farmacologia , Convulsões/tratamento farmacológico , Soman , Estado Epiléptico/tratamento farmacológico , Animais , Anticonvulsivantes/uso terapêutico , Convulsivantes , Moduladores GABAérgicos/uso terapêutico , Masculino , Neurotransmissores/uso terapêutico , Pilocarpina , Ratos , Ratos Sprague-Dawley , Convulsões/induzido quimicamente , Estado Epiléptico/induzido quimicamente
18.
Ann N Y Acad Sci ; 1374(1): 144-50, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27258770

RESUMO

Organophosphorus pesticides (OPs) and nerve agents (NAs) are highly toxic chemicals that pose a significant threat to human health worldwide. These compounds induce status epilepticus (SE) by irreversibly blocking the ability of acetylcholinesterase to break down acetylcholine at neural synapses. Animal models of organophosphate-induced SE are a crucial resource for identifying new anticonvulsant therapies. Here, we describe the development of various animal models of SE induced by NA or OP exposure. Experiments in nonhuman primates, rats, mice, and guinea pigs have helped to identify novel therapeutic targets in the central nervous system, with particular success at modulating GABAergic and glutamatergic receptors. The anticonvulsants identified by NA- and OP-induced SE models are well poised for fast advancement into clinical development, and their potential utility in the broader field of epilepsy should make them all the more attractive for commercial pursuit.


Assuntos
Anticonvulsivantes/uso terapêutico , Descoberta de Drogas , Agentes Neurotóxicos/toxicidade , Compostos Organofosforados/toxicidade , Praguicidas/toxicidade , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico , Animais , Modelos Animais de Doenças , Humanos
19.
Anal Chem ; 88(12): 6523-30, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27161086

RESUMO

Several methods for the bioanalysis of nerve agents or their metabolites have been developed for the verification of nerve agent exposure. However, parent nerve agents and known metabolites are generally rapidly excreted from biological matrixes typically used for analysis (i.e., blood, urine, and tissues), limiting the amount of time after an exposure that verification is feasible. In this study, hair was evaluated as a long-term repository of nerve agent hydrolysis products. Pinacolyl methylphosphonic acid (PMPA; hydrolysis product of soman) and isopropyl methylphosphonic acid (IMPA; hydrolysis product of sarin) were extracted from hair samples with N,N-dimethylformamide and subsequently analyzed by liquid chromatography-tandem mass spectrometry. Limits of detection for PMPA and IMPA were 0.15 µg/kg and 7.5 µg/kg and linear ranges were 0.3-150 µg/kg and 7.5-750 µg/kg, respectively. To evaluate the applicability of the method to verify nerve agent exposure well after the exposure event, rats were exposed to soman, hair was collected after approximately 30 days, and stored for up to 3.5 years prior to initial analysis. PMPA was positively identified in 100% of the soman-exposed rats (N = 8) and was not detected in any of the saline treated animals (N = 6). The hair was reanalyzed 5.5 years after exposure and PMPA was detected in 6 of the 7 (one of the soman-exposed hair samples was completely consumed in the analysis at 3.5 years) rat hair samples (with no PMPA detected in the saline exposed animals). Although analysis of CWA metabolites from hair via this technique is not appropriate as a universal method to determine exposure (i.e., it takes time for the hair to grow above the surface of the skin and typical analysis times are >24 h), it complements existing methods and could become the preferred method for verification of exposure if 10 or more days have elapsed after a suspected exposure.


Assuntos
Substâncias para a Guerra Química/análise , Cabelo/química , Agentes Neurotóxicos/análise , Compostos Organofosforados/análise , Soman/análogos & derivados , Substâncias para a Guerra Química/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Cabelo/metabolismo , Humanos , Limite de Detecção , Agentes Neurotóxicos/metabolismo , Compostos Organofosforados/metabolismo , Sarina/análise , Sarina/metabolismo , Soman/análise , Soman/metabolismo , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos
20.
Epilepsy Behav ; 49: 298-302, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25979572

RESUMO

sec-Butylpropylacetamide (SPD) is a one-carbon homologue of valnoctamide (VCD), a chiral constitutional isomer of valproic acid's (VPA) corresponding amide--valpromide. Racemic-SPD and racemic-VCD possess a unique and broad-spectrum antiseizure profile superior to that of VPA. In addition, SPD blocks behavioral and electrographic status epilepticus (SE) induced by pilocarpine and the organophosphates soman and paraoxon. Valnoctamide has similar activity as SPD in the soman-induced SE model. The activity of SPD and VCD against SE is superior to that of diazepam and midazolam in terms of rapid onset, potency, and ability to block SE when given 20 to 60 min after seizure onset. sec-Butylpropylacetamide and VCD possess two stereogenic carbons in their chemical structure and, thus, exist as a racemic mixture of four individual stereoisomers. The anticonvulsant activity of the individual stereoisomers of SPD and VCD was comparatively evaluated in several anticonvulsant rodent models including the benzodiazepine-resistant SE model. sec-Butylpropylacetamide has stereoselective pharmacokinetics (PK) and pharmacodynamics (PD). The higher clearance of (2R,3S)-SPD and (2S,3R)-SPD led to a 50% lower plasma exposure and, consequently, to a lower anticonvulsant activity compared to racemic-SPD and its two other stereoisomers. Racemic-SPD, (2S,3S)-SPD, and (2R,3R)-SPD have similar anticonvulsant activities and PK profiles that are better than those of (2R,3S)-SPD and (2S,3R)-SPD. Valnoctamide has a stereoselective PK with (2S,3S)-VCD exhibiting the lowest clearance and, consequently, a twice-higher plasma exposure than all other stereoisomers. Nevertheless, there was less stereoselectivity in VCD anticonvulsant activity, and each stereoisomer had similar ED50 values in most models. sec-Butylpropylacetamide and VCD stereoisomers did not cause teratogenicity (i.e., neural tube defect) in mice at doses 3-12 times higher than their anticonvulsant-ED50 values. This article is part of a Special Issue entitled "Status Epilepticus".


Assuntos
Amidas/uso terapêutico , Anticonvulsivantes/uso terapêutico , Estado Epiléptico/tratamento farmacológico , Ácido Valproico/análogos & derivados , Amidas/química , Animais , Anticonvulsivantes/química , Humanos , Estereoisomerismo , Ácido Valproico/química , Ácido Valproico/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...