Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
medRxiv ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38746195

RESUMO

Purpose: There is a concern in pediatric surgery practice that rib-based fixation may limit chest wall motion in early onset scoliosis (EOS). The purpose of this study is to address the above concern by assessing the contribution of chest wall excursion to respiration before and after surgery. Methods: Quantitative dynamic magnetic resonance imaging (QdMRI) is performed on EOS patients (before and after surgery) and normal children in this retrospective study. QdMRI is purely an image-based approach and allows free breathing image acquisition. Tidal volume parameters for chest walls (CWtv) and hemi-diaphragms (Dtv) were analyzed on concave and convex sides of the spinal curve. EOS patients (1-14 years) and normal children (5-18 years) were enrolled, with an average interval of two years for dMRI acquisition before and after surgery. Results: CWtv significantly increased after surgery in the global comparison including all EOS patients (p < 0.05). For main thoracic curve (MTC) EOS patients, CWtv significantly improved by 50.24% (concave side) and 35.17% (convex side) after age correction (p < 0.05) after surgery. The average ratio of Dtv to CWtv on the convex side in MTC EOS patients was not significantly different from that in normal children (p=0.78), although the concave side showed the difference to be significant. Conclusion: Chest wall component tidal volumes in EOS patients measured via QdMRI did not decrease after rib-based surgery, suggesting that rib-based fixation does not impair chest wall motion in pediatric patients with EOS.

2.
bioRxiv ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38746219

RESUMO

Background: A normative database of regional respiratory structure and function in healthy children does not exist. Methods: VGC provides a database with four categories of regional respiratory measurement parameters including morphological, architectural, dynamic, and developmental. The database has 3,820 3D segmentations (around 100,000 2D slices with segmentations). Age and gender group analysis and comparisons for healthy children were performed using those parameters via two-sided t-testing to compare mean measurements, for left and right sides at end-inspiration (EI) and end-expiration (EE), for different age and gender specific groups. We also apply VGC measurements for comparison with TIS patients via an extrapolation approach to estimate the association between measurement and age via a linear model and to predict measurements for TIS patients. Furthermore, we check the Mahalanobis distance between TIS patients and healthy children of corresponding age. Findings: The difference between male and female groups (10-12 years) behave differently from that in other age groups which is consistent with physiology/natural growth behavior related to adolescence with higher right lung and right diaphragm tidal volumes for females(p<0.05). The comparison of TIS patients before and after surgery show that the right and left components are not symmetrical, and the left side diaphragm height and tidal volume has been significantly improved after surgery (p <0.05). The left lung volume at EE, and left diaphragm height at EI of TIS patients after surgery are closer to the normal children with a significant smaller Mahalanobis distance (MD) after surgery (p<0.05). Interpretation: The VGC system can serve as a reference standard to quantify regional respiratory abnormalities on dMRI in young patients with various respiratory conditions and facilitate treatment planning and response assessment. Funding: The grant R01HL150147 from the National Institutes of Health (PI Udupa).

3.
medRxiv ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38746267

RESUMO

Purpose: Lung tissue and lung excursion segmentation in thoracic dynamic magnetic resonance imaging (dMRI) is a critical step for quantitative analysis of thoracic structure and function in patients with respiratory disorders such as Thoracic Insufficiency Syndrome (TIS). However, the complex variability of intensity and shape of anatomical structures and the low contrast between the lung and surrounding tissue in MR images seriously hamper the accuracy and robustness of automatic segmentation methods. In this paper, we develop an interactive deep-learning based segmentation system to solve this problem. Material & Methods: Considering the significant difference in lung morphological characteristics between normal subjects and TIS subjects, we utilized two independent data sets of normal subjects and TIS subjects to train and test our model. 202 dMRI scans from 101 normal pediatric subjects and 92 dMRI scans from 46 TIS pediatric subjects were acquired for this study and were randomly divided into training, validation, and test sets by an approximate ratio of 5:1:4. First, we designed an interactive region of interest (ROI) strategy to detect the lung ROI in dMRI for accelerating the training speed and reducing the negative influence of tissue located far away from the lung on lung segmentation. Second, we utilized a modified 2D U-Net to segment the lung tissue in lung ROIs, in which the adjacent slices are utilized as the input data to take advantage of the spatial information of the lungs. Third, we extracted the lung shell from the lung segmentation results as the shape feature and inputted the lung ROIs with shape feature into another modified 2D U-Net to segment the lung excursion in dMRI. To evaluate the performance of our approach, we computed the Dice coefficient (DC) and max-mean Hausdorff distance (MM-HD) between manual and automatic segmentations. In addition, we utilized Coefficient of Variation (CV) to assess the variability of our method on repeated dMRI scans and the differences of lung tidal volumes computed from the manual and automatic segmentation results. Results: The proposed system yielded mean Dice coefficients of 0.96±0.02 and 0.89±0.05 for lung segmentation in dMRI of normal subjects and TIS subjects, respectively, demonstrating excellent agreement with manual delineation results. The Coefficient of Variation and p-values show that the estimated lung tidal volumes of our approach are statistically indistinguishable from those derived by manual segmentations. Conclusions: The proposed approach can be applied to lung tissue and lung excursion segmentation from dynamic MR images with high accuracy and efficiency. The proposed approach has the potential to be utilized in the assessment of patients with TIS via dMRI routinely.

4.
medRxiv ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38746409

RESUMO

Purpose: Thoracic insufficiency syndrome (TIS) affects ventilatory function due to spinal and thoracic deformities limiting lung space and diaphragmatic motion. Corrective orthopedic surgery can be used to help normalize skeletal anatomy, restoring lung space and diaphragmatic motion. This study employs free-breathing dynamic MRI (dMRI) and quantifies the 3D motion of each hemi-diaphragm surface in normal and TIS patients, and evaluates effects of surgical intervention. Materials and Methods: In a retrospective study of 149 pediatric patients with TIS and 190 healthy children, we constructed 4D images from free-breathing dMRI and manually delineated the diaphragm at end-expiration (EE) and end-inspiration (EI) time points. We automatically selected 25 points uniformly on each hemi-diaphragm surface, calculated their relative velocities between EE and EI, and derived mean velocities in 13 homologous regions for each hemi-diaphragm to provide measures of regional 3D hemi-diaphragm motion. T-testing was used to compare velocity changes before and after surgery, and to velocities in healthy controls. Results: The posterior-central region of the right hemi-diaphragm exhibited the highest average velocity post-operatively. Posterior regions showed greater velocity changes after surgery in both right and left hemi-diaphragms. Surgical reduction of thoracic Cobb angle displayed a stronger correlation with changes in diaphragm velocity than reduction in lumbar Cobb angle. Following surgery, the anterior regions of the left hemi-diaphragm tended to approach a more normal state. Conclusion: Quantification of regional motion of the 3D diaphragm surface in normal subjects and TIS patients via free-breathing dMRI is feasible. Derived measurements can be assessed in comparison to normal subjects to study TIS and the effects of surgery.

5.
medRxiv ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38766023

RESUMO

Purpose: Analysis of the abnormal motion of thoraco-abdominal organs in respiratory disorders such as the Thoracic Insufficiency Syndrome (TIS) and scoliosis such as adolescent idiopathic scoliosis (AIS) or early onset scoliosis (EOS) can lead to better surgical plans. We can use healthy subjects to find out the normal architecture and motion of a rib cage and associated organs and attempt to modify the patient's deformed anatomy to match to it. Dynamic magnetic resonance imaging (dMRI) is a practical and preferred imaging modality for capturing dynamic images of healthy pediatric subjects. In this paper, we propose an auto-segmentation set-up for the lungs, kidneys, liver, spleen, and thoraco-abdominal skin in these dMRI images which have their own challenges such as poor contrast, image non-standardness, and similarity in texture amongst gas, bone, and connective tissue at several inter-object interfaces. Methods: The segmentation set-up has been implemented in two steps: recognition and delineation using two deep neural network (DL) architectures (say DL-R and DL-D) for the recognition step and delineation step, respectively. The encoder-decoder framework in DL-D utilizes features at four different resolution levels to counter the challenges involved in the segmentation. We have evaluated on dMRI sagittal acquisitions of 189 (near-)normal subjects. The spatial resolution in all dMRI acquisitions is 1.46 mm in a sagittal slice and 6.00 mm between sagittal slices. We utilized images of 89 (10) subjects at end inspiration for training (validation). For testing we experimented with three scenarios: utilizing (1) the images of 90 (=189-89-10) different (remaining) subjects at end inspiration for testing, (2) the images of the aforementioned 90 subjects at end expiration for testing, and (3) the images of the aforesaid 99 (=89+10) subjects but at end expiration for testing. In some situations, we can take advantage of already available ground truth (GT) of a subject at a particular respiratory phase to automatically segment the object in the image of the same subject at a different respiratory phase and then refining the segmentation to create the final GT. We anticipate that this process of creating GT would require minimal post hoc correction. In this spirit, we conducted separate experiments where we assume to have the ground truth of the test subjects at end expiration for scenario (1), end inspiration for (2), and end inspiration for (3). Results: Amongst these three scenarios of testing, for the DL-R, we achieve a best average location error (LE) of about 1 voxel for the lungs, kidneys, and spleen and 1.5 voxels for the liver and the thoraco- abdominal skin. The standard deviation (SD) of LE is about 1 or 2 voxels. For the delineation approach, we achieve an average Dice coefficient (DC) of about 0.92 to 0.94 for the lungs, 0.82 for the kidneys, 0.90 for the liver, 0.81 for the spleen, and 0.93 for the thoraco-abdominal skin. The SD of DC is lower for the lungs, liver, and the thoraco-abdominal skin, and slightly higher for the spleen and kidneys. Conclusions: Motivated by applications in surgical planning for disorders such as TIS, AIS, and EOS, we have shown an auto-segmentation system for thoraco-abdominal organs in dMRI acquisitions. This proposed setup copes with the challenges posed by low resolution, motion blur, inadequate contrast, and image intensity non-standardness quite well. We are in the process of testing its effectiveness on TIS patient dMRI data.

6.
medRxiv ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38798322

RESUMO

Background: The diaphragm is a critical structure in respiratory function, yet in-vivo quantitative description of its motion available in the literature is limited. Research Question: How to quantitatively describe regional hemi-diaphragmatic motion and curvature via free-breathing dynamic magnetic resonance imaging (dMRI)? Study Design and Methods: In this prospective cohort study we gathered dMRI images of 177 normal children and segmented hemi-diaphragm domes in end-inspiration and end-expiration phases of the constructed 4D image. We selected 25 points uniformly located on each 3D hemi-diaphragm surface. Based on the motion and local shape of hemi-diaphragm at these points, we computed the velocities and sagittal and coronal curvatures in 13 regions on each hemi-diaphragm surface and analyzed the change in these properties with age and gender. Results: Our cohort consisted of 94 Females, 6-20 years (12.09 + 3.73), and 83 Males, 6-20 years (11.88 + 3.57). We observed velocity range: ∼2mm/s to ∼13mm/s; Curvature range -Sagittal: ∼3m -1 to ∼27m -1 ; Coronal: ∼6m -1 to ∼20m -1 . There was no significant difference in velocity between genders, although the pattern of change in velocity with age was different for the two groups. Strong correlations in velocity were observed between homologous regions of right and left hemi-diaphragms. There was no significant difference in curvatures between genders or change in curvatures with age. Interpretation: Regional motion/curvature of the 3D diaphragmatic surface can be estimated using free-breathing dynamic MRI. Our analysis sheds light on here-to-fore unknown matters such as how the pediatric 3D hemi-diaphragm motion/shape varies regionally, between right and left hemi-diaphragms, between genders, and with age.

7.
J Bone Joint Surg Am ; 105(1): 53-62, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36598475

RESUMO

BACKGROUND: Quantitative regional assessment of thoracic function would enable clinicians to better understand the regional effects of therapy and the degree of deviation from normality in patients with thoracic insufficiency syndrome (TIS). The purpose of this study was to determine the regional functional effects of surgical treatment in TIS via quantitative dynamic magnetic resonance imaging (MRI) in comparison with healthy children. METHODS: Volumetric parameters were derived via 129 dynamic MRI scans from 51 normal children (November 2017 to March 2019) and 39 patients with TIS (preoperatively and postoperatively, July 2009 to May 2018) for the left and right lungs, the left and right hemi-diaphragms, and the left and right hemi-chest walls during tidal breathing. Paired t testing was performed to compare the parameters from patients with TIS preoperatively and postoperatively. Mahalanobis distances between parameters of patients with TIS and age-matched normal children were assessed to evaluate the closeness of patient lung function to normality. Linear regression functions were utilized to estimate volume deviations of patients with TIS from normality, taking into account the growth of the subjects. RESULTS: The mean Mahalanobis distances for the right hemi-diaphragm tidal volume (RDtv) were -1.32 ± 1.04 preoperatively and -0.05 ± 1.11 postoperatively (p = 0.001). Similarly, the mean Mahalanobis distances for the right lung tidal volume (RLtv) were -1.12 ± 1.04 preoperatively and -0.10 ± 1.26 postoperatively (p = 0.01). The mean Mahalanobis distances for the ratio of bilateral hemi-diaphragm tidal volume to bilateral lung tidal volume (BDtv/BLtv) were -1.68 ± 1.21 preoperatively and -0.04 ± 1.10 postoperatively (p = 0.003). Mahalanobis distances decreased after treatment, suggesting reduced deviations from normality. Regression results showed that all volumes and tidal volumes significantly increased after treatment (p < 0.001), and the tidal volume increases were significantly greater than those expected from normal growth for RDtv, RLtv, BDtv, and BLtv (p < 0.05). CONCLUSIONS: Postoperative tidal volumes of bilateral lungs and bilateral hemi-diaphragms of patients with TIS came closer to those of normal children, indicating positive treatment effects from the surgical procedure. Quantitative dynamic MRI facilitates the assessment of regional effects of a surgical procedure to treat TIS. LEVEL OF EVIDENCE: Diagnostic Level II. See Instructions for Authors for a complete description of levels of evidence.


Assuntos
Pulmão , Respiração , Criança , Humanos , Pulmão/diagnóstico por imagem , Pulmão/cirurgia , Tórax/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Volume de Ventilação Pulmonar
8.
Respir Care ; 67(11): 1405-1412, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36127127

RESUMO

BACKGROUND: Intrinsic PEEP during mechanical ventilation occurs when there is insufficient time for expiration to functional residual capacity before the next inspiration, resulting in air trapping. Increased expiratory resistance (RE), too rapid of a patient or ventilator breathing rate, or a longer inspiratory to expiratory time ratio (TI/TE) can all be causes of intrinsic PEEP. Intrinsic PEEP can result in increased work of breathing and patient-ventilator asynchrony (PVA) during patient-triggered breaths. We hypothesized that the difference between intrinsic PEEP and ventilator PEEP acts as an inspiratory load resulting in trigger asynchrony that needs to be overcome by increased respiratory muscle pressure (Pmus). METHODS: Using a Servo lung model (ASL 5000) and LTV 1200 ventilator in pressure control mode, we developed a passive model demonstrating how elevated RE increases intrinsic PEEP above ventilator PEEP. We also developed an active model investigating the effects of RE and intrinsic PEEP on trigger asynchrony (expressed as percentage of patient-initiated breaths that failed to trigger). We then studied if trigger asynchrony could be reduced by increased Pmus. RESULTS: Intrinsic PEEP increased significantly with increasing RE (r = 0.97, P = .006). Multivariate logistic regression analysis showed that both RE and negative Pmus levels affect trigger asynchrony (P < .001). CONCLUSIONS: A passive lung model describes the development of increasing intrinsic PEEP with increasing RE at a given ventilator breathing rate. An active lung model shows how this can lead to trigger asynchrony since the Pmus needed to trigger a breath is greater with increased RE, as the inspiratory muscles must overcome intrinsic PEEP. This model will lend itself to the study of intrinsic PEEP engendered by a higher ventilator breathing rate, as well as higher TI/TE, and will be useful in ventilator simulation scenarios of PVA. The model also suggests that increasing ventilator PEEP to match intrinsic PEEP can improve trigger asynchrony through a reduction in RE.


Assuntos
Respiração por Pressão Positiva Intrínseca , Respiração Artificial , Criança , Humanos , Expiração , Pulmão , Respiração Artificial/métodos , Ventiladores Mecânicos
9.
Artigo em Inglês | MEDLINE | ID: mdl-36039169

RESUMO

Quantitative thoracic dynamic magnetic resonance imaging (QdMRI), a recently developed technique, provides a potential solution for evaluating treatment effects in thoracic insufficiency syndrome (TIS). In this paper, we integrate all related algorithms and modules during our work from the past 10 years on TIS into one system, named QdMRI, to address the following questions: (1) How to effectively acquire dynamic images? For many TIS patients, subjects are unable to cooperate with breathing instructions during image acquisition. Image acquisition can only be implemented under free-breathing conditions, and it is not feasible to use a surrogate device for tracing breathing signals. (2) How to assess the thoracic structures from the acquired image, such as lungs, left and right, separately? (3) How to depict the dynamics of thoracic structures due to respiration motion? (4) How to use the structural and functional information for the quantitative evaluation of surgical TIS treatment and for the design of the surgery plan? The QdMRI system includes 4 major modules: dynamic MRI (dMRI) acquisition, 4D image construction, image segmentation (from 4D image), and visualization of segmentation results, dynamic measurements, and comparisons of measurements from TIS patients with those from normal children. Scanning/image acquisition time for one subject is ~20 minutes, 4D image construction time is ~5 minutes, image segmentation of lungs via deep learning is 70 seconds for all time points (with the average DICE 0.96 in healthy children), and measurement computation time is 2 seconds.

10.
IEEE Trans Biomed Eng ; 69(4): 1424-1434, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34618668

RESUMO

OBJECTIVE: Determination of end-expiration (EE) and end-inspiration (EI) time points in the respiratory cycle in free-breathing slice image acquisitions of the thorax is one key step needed for 4D image construction via dynamic magnetic resonance imaging. The purpose of this paper is to realize the automation of the labeling process. METHODS: The diaphragm is used as a surrogate for tracking respiratory motion and determining the state of breathing. Regions of interest (ROIs) containing the hemi-diaphragms are set by human interaction to compute the optical flow matrix between two adjacent 2D time slices. Subsequently, our approach examines the diaphragm speed and direction and by considering the change in the optical flow matrix, the EE or EI points are detected. RESULTS AND CONCLUSION: The labeling accuracy for the lateral aspect of the left lung and the lateral aspect of the right lung (0.63±0.71) is significantly lower (P < 0.05) than the accuracy for other positions (0.42±0.44), but the error in almost all scenarios is less than 1 time point. By comparing between automatic and manual labeling in 12 scenarios, we found out that 9 scenarios showed no significant difference (P > 0.05) between two methods. Overall, our method is found to be highly agreeable with manual labeling and greatly shortens the labeling time, requiring less than 8 minutes/ study compared to 4 hours/ study for manual labeling. SIGNIFICANCE: Our method achieves automatic labeling of EE and EI points without the need for use of patientinternal or external markers.


Assuntos
Imageamento por Ressonância Magnética , Respiração , Diafragma , Humanos , Imageamento por Ressonância Magnética/métodos , Movimento (Física) , Tórax/diagnóstico por imagem
11.
Artigo em Inglês | MEDLINE | ID: mdl-36860798

RESUMO

Breathing-related movement analysis is important in the study of many disease processes. The analysis of diaphragmatic motion via thoracic imaging in particular is important in a variety of disorders. Compared to computed tomography (CT) and fluoroscopy, dynamic magnetic resonance imaging (dMRI) has several advantages, such as better soft tissue contrast, no ionizing radiation, and greater flexibility in selecting scanning planes. In this paper, we propose a novel method for full diaphragmatic motion analysis via free-breathing dMRI. Firstly, after 4D dMRI image construction in a cohort of 51 normal children, we manually delineated the diaphragm on sagittal plane dMRI images at end-inspiration and end-expiration. Then, 25 points were selected uniformly and homologously on each hemi-diaphragm surface. Based on the inferior-superior displacements of these 25 points between end-expiration (EE) and end-inspiration (EI) time points, we obtained their velocities. We then summarized 13 parameters from these velocities for each hemi-diaphragm to provide a quantitative regional analysis of diaphragmatic motion. We observed that the regional velocities of the right hemi-diaphragm were almost always statistically significantly greater than those of the left hemi-diaphragm in homologous locations. There was a significant difference for sagittal curvatures but not for coronal curvatures between the two hemi-diaphragms. Using this methodology, future larger scale prospective studies may be considered to confirm our findings in the normal state and to quantitatively assess regional diaphragmatic dysfunction when various disease conditions are present.

12.
Artigo em Inglês | MEDLINE | ID: mdl-36865001

RESUMO

Lung segmentation in dynamic thoracic magnetic resonance imaging (dMRI) is a critical step for quantitative analysis of thoracic structure and function in patients with respiratory disorders. Some semi-automatic and automatic lung segmentation methods based on traditional image processing models have been proposed mainly for CT with good performance. However, the low efficiency and robustness of these methods and inapplicability to dMRI make them unsuitable to segment the large numbers of dMRI datasets. In this paper, we present a novel automatic lung segmentation approach for dMRI based on two-stage convolutional neural networks (CNNs). In the first stage, we utilize the modified min-max normalization method to pre-process MRI for increasing the contrast between the lung and surrounding tissue and propose a corner-points and CNN based region of interest (ROI) detection strategy to extract the lung ROI from sagittal dMRI slices, which can reduce the negative influence of tissues located far away from the lung. In the second stage, we input the adjacent ROIs of target slices into the modified 2D U-Net to segment the lung tissue. The qualitative and quantitative results demonstrate that our approach achieves high accuracy and stability in terms of lung segmentation for dMRI.

13.
Med Image Anal ; 72: 102088, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34052519

RESUMO

PURPOSE: Since real-time 4D dynamic magnetic resonance imaging (dMRI) methods with adequate spatial and temporal resolution for imaging the pediatric thorax are currently not available, free-breathing slice acquisitions followed by appropriate 4D construction methods are currently employed. Self-gating methods, which extract breathing signals only from image information without any external gating technology, have much potential for this purpose, such as for use in studying pediatric thoracic insufficiency syndrome (TIS). Patients with TIS frequently suffer from extreme malformations of the chest wall, diaphragm, and spine, leading to breathing that is very complex, including deep or shallow respiratory cycles. Existing 4D construction methods cannot perform satisfactorily in this scenario, and most are not fully automatic, requiring manual interactive operations. In this paper, we propose a novel fully automatic 4D image construction method based on an image-derived concept called flux to address these challenges. METHODS: We utilized 25 dMRI data sets from 25 pediatric subjects with no known thoracic anomalies and 58 dMRI data sets from 29 patients with TIS where each patient had a dMRI scan before and after surgery. A time sequence of 80 slices are acquired at each sagittal location continuously at a rate of ~480 ms per slice under free-breathing conditions, with 30-40 sagittal locations across the chest for each subject depending on the thoracic size. In our approach, we first extract the breathing signal for each sagittal location based on the flux of the optical flow vector field of the body region from the image time series. Here, for each time point of respiratory phase, the net flux of the body region can be regarded as the flux going into or out of the body region, which we term Optical Flux (OFx). OFx provides a very robust representation of the real breathing motion of the thorax. OFx allows us to perform a full analysis of all respiratory cycles, extract only normal cycles in a robust manner, and map all extracted normal cycles on to one cosine respiration model for each sagittal location. Subsequently, we re-sample one normal cycle from the respiration model for each location independently. The normal cycle models associated with the different sagittal locations are finally composited to form the final constructed 4D image. RESULTS: We employ several metrics to evaluate the quality of the 4D construction results: Eie - error in locating time instants corresponding to end inspiration and end expiration; Eto - deviation from correct temporal order in each detected normal cycle; Ess - deviation in spatial smoothness; and Esc - deviation from spatial continuity as scored by a reader. The means and standard deviations of these metrics for normal subjects and TIS patients are found to be, respectively: Eie: 0.25 ± 0.05 and 0.38 ± 0.16 in units of time instance (ideal value = 0); Eto: 2.7% ± 2.3% and 1.8% ± 2% (ideal value = 0%); Ess: 0.5 ± 0.17 and 0.54 ± 0.25 in pixel units (ideal value = 0); Esc: 4.6 ± 0.48 and 4.56 ± 0.98 (score range: best = 5, worst = 1). The results show that the OFx method achieves excellent spatial and temporal continuity and its yield was 100% meaning that it successfully performed 4D construction on every data set tested. Compared to a recently published method, OFx is fully automatic requiring about 5 min of computational time per study starting from acquired dMRI scans. The method achieves high temporal and spatial continuity even on complex TIS data sets that include many abnormal respiratory cycles. CONCLUSIONS: A new 4D dMRI construction method based on the concept of optical flux is presented which is fully automatic and very robust in deriving respiratory signals purely from dynamic image sequences even when presented with complex breathing patterns due to severe disease conditions like TIS. Evaluations show that its accuracy is comparable to the variations found in manual annotations. An important characteristic of the method is that it is independent of the number of sagittal locations used in the construction process, which suggests that it is applicable to imaging techniques where data are acquired at only a few sagittal locations instead of the full width of the thorax. The method is not tied to any specific imaging modality, as demonstrated in this paper on not just dMRI but dynamic computed tomography (CT) as well.


Assuntos
Imageamento por Ressonância Magnética , Respiração , Criança , Humanos , Movimento (Física) , Tórax , Tomografia Computadorizada por Raios X
14.
Artigo em Inglês | MEDLINE | ID: mdl-35465345

RESUMO

Dynamic lung volumetric parameters are useful for clinical assessment of many thoracic disorders, given that respiration is a dynamic process. Estimation of such parameters based on imaging and analysis is an important goal to achieve if implementation in routine clinical practice is to become a reality. Compared to CT, dynamic thoracic MRI has several advantages including better soft tissue contrast, lack of ionizing radiation, and flexibility in selecting scanning planes. 4D dynamic MRI seems to be the best choice for some clinical applications, notwithstanding the major limitation of a long image acquisition time (~45 minutes). Therefore, approaches to acquire images and estimate volumetric parameters rapidly is highly desirable in dynamic MRI-based clinical applications. In this paper, we present a technique for estimating lung volumetric parameters from limited-slices dynamic thoracic MRI, greatly reducing the number of slices to be scanned and therefore also the time required for image acquisition. We demonstrate a relative RMS error of predicted lung volumes of less than 5% by utilizing only 5 sagittal MRI slices through each lung compared to the current full scan involving about 20 slices per lung. As such, this approach can lead to time-saving during scan acquisition and therefore increased patient comfort and convenience for practical real-world clinical applications. This may potentially also improve image quality and usability due to the reduction of patient motion, abnormal breathing patterns, etc. ensuing from improved patient comfort and scan duration.

15.
Artigo em Inglês | MEDLINE | ID: mdl-35465442

RESUMO

Quantitative thoracic dynamic magnetic resonance imaging (QdMRI), a recently developed technique, provides a potential solution for evaluating treatment effects in thoracic insufficiency syndrome (TIS). In this paper, we demonstrate how lung parenchymal characteristics can be assessed via intensity properties in lung dynamic MRI, a modality suitable for use in pediatric patients. The QdMRI-based approach includes dynamic MR image acquisition, 4D image construction, image pre-processing with non-uniformity correction and intensity standardization, and lung segmentation from the 4D constructed image via a deep learning approach, as well as extraction of image parenchymal intensity properties from the segmented lungs and statistical comparisons among different clinical scenarios. We include 22 dMRI scans from 11 TIS patients (each with both pre-operative and post-operative scans) and 23 dMRI scans from healthy children. Two-sided paired t-testing is performed to compare lung intensity properties between end of expiration (EE) and end of inspiration (EI) within TIS patients (pre-operative and post-operative, separately) and normal children. We also compare the lung intensity properties at EE and EI among pre-operative TIS patients, post-operative TIS patients, and normal children. Experimental results show that lung (T2) intensity at EI is significantly lower than that at EE and lung intensity of post-operative TIS patients is significantly lower than that in pre-operative TIS patients and closer to that of normal children than to that of pre-operative TIS patients, indicating improvement in lung aeration. To our knowledge, this is the first study to provide a quantitative dynamic functional method to analyze lung parenchyma during tidal breathing on dynamic MRI in both healthy children and pediatric patients with TIS.

16.
Chest ; 159(2): 712-723, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32768456

RESUMO

BACKGROUND: A database of normative quantitative measures of regional thoracic ventilatory dynamics, which is essential to understanding better thoracic growth and function in children, does not exist. RESEARCH QUESTION: How to quantify changes in the components of ventilatory pump dynamics during childhood via thoracic quantitative dynamic MRI (QdMRI)? STUDY DESIGN AND METHODS: Volumetric parameters were derived via 51 dynamic MRI scans for left and right lungs, hemidiaphragms, and hemichest walls during tidal breathing. Volume-based symmetry and functional coefficients were defined to compare left and right sides and to compare contributions of the hemidiaphragms and hemichest walls with tidal volumes (TVs). Statistical analyses were performed to compare volume components among four age-based groups. RESULTS: Right thoracic components were significantly larger than left thoracic components, with average ratios of 1.56 (95% CI, 1.41-1.70) for lung TV, 1.81 (95% CI, 1.60-2.03) for hemidiaphragm excursion TV, and 1.34 (95% CI, 1.21-1.47) for hemichest wall excursion TV. Right and left lung volumes at end-expiration showed, respectively, a 44% and 48% increase from group 2 (8 ≤ age < 10) to group 3 (10 ≤ age < 12). These numbers from group 3 to group 4 (12 ≤ age ≤ 14) were 24% and 28%, respectively. Right and left hemichest wall TVs exhibited, respectively, 48% and 45% increases from group 3 to group 4. INTERPRETATION: Normal right and left ventilatory volume components have considerable asymmetry in morphologic features and dynamics and change with age. Chest wall and diaphragm contributions vary in a likewise manner. Thoracic QdMRI can provide quantitative data to characterize the regional function and growth of the thorax as it relates to ventilation.


Assuntos
Desenvolvimento Infantil , Imageamento por Ressonância Magnética/métodos , Sistema Respiratório/diagnóstico por imagem , Sistema Respiratório/crescimento & desenvolvimento , Tórax/diagnóstico por imagem , Tórax/crescimento & desenvolvimento , Adolescente , Criança , Feminino , Humanos , Masculino , Pennsylvania , Valores de Referência , Respiração , Testes de Função Respiratória
17.
Artigo em Inglês | MEDLINE | ID: mdl-33060886

RESUMO

4D thoracic images constructed from free-breathing 2D slice acquisitions based on dynamic magnetic resonance imaging (dMRI) provide clinicians the capability of examining the dynamic function of the left and right lungs, left and right hemi-diaphragms, and left and right chest wall separately for thoracic insufficiency syndrome (TIS) treatment [1]. There are two shortcomings of the existing 4D construction methods [2]: a) the respiratory phase corresponding to end expiration (EE) and end inspiration (EI) need to be manually identified in the dMRI sequence; b) abnormal breathing signals due to non-tidal breathing cannot be detected automatically which affects the construction process. Since the typical 2D dynamic MRI acquisition contains ~3000 slices per patient, handling these tasks manually is very labor intensive. In this study, we propose a deep-learning-based framework for addressing both problems via convolutional neural networks (CNNs) [3] and Long Short-Term Memory (LSTM) [4] models. A CNN is used to extract the motion characteristics from the respiratory dMRI sequences to automatically identify contiguous sequences of slices representing exhalation and inhalation processes. EE and EI annotations are subsequently completed by comparing the changes in the direction of motion of the diaphragm. A LSTM network is used for detecting abnormal respiratory signals by exploiting the non-uniform motion feature sequence of abnormal breathing motions. Experimental results show the mean error of labeling EE and EI is ~0.3 dMRI time point unit (much less than one time point). The accuracy of abnormal cycle detection reaches 80.0%. The proposed approach achieves results highly comparable to manual labeling in accuracy but with close to full automation of the whole process. The framework proposed here can be readily adapted to other modalities and dynamic imaging applications.

18.
Artigo em Inglês | MEDLINE | ID: mdl-33052162

RESUMO

Retrospective 4D image construction from continuously acquired 2D slices is a necessary step to achieve high-quality 4D images. Self-gating methods, which extract breathing signals only from image information without any external gating technology, have much potential, such as in pediatric patients with thoracic insufficiency syndrome (TIS) who suffer from extreme malformations of the chest wall, diaphragm, and spine, leading to breathing that is very complex with lots of abnormal respiration cycles, including very deep or shallow cycles. Existing methods do not work well in this clinical scenario and most are not fully automatic, requiring some manual interactive operations. In this paper, we propose a fully automatic 4D dMRI construction method based on the concept of flux to address the 4D image construction from 2D slices of subjects with complex respiration. Firstly, we extract the breathing signal for each location based on the flux of the optical flow vector field of the body region from the image series. Then, we give a full analysis for all cycles and extract several normal ones and map them to one cosine respiration model for each location. After that, we re-sample one normal cycle from the respiration model for each location independently. All of these resampled normal cycles form the final constructed 4D image. Qualitative and quantitative evaluations on 25 subjects show that the proposed method can handle datasets from subjects with more complex respiration and achieves good self-consistency results while maintaining time and space continuity.

19.
Pediatr Pulmonol ; 55(9): 2471-2478, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32658385

RESUMO

OBJECTIVE: Respiratory compromise in congenital muscular dystrophy (CMD) occurs, in part, from chest wall contractures. Passive stretch with hyperinsufflation therapy could reduce related costo-vertebral joint contractures. We sought to examine the impact of hyperinsufflation use on lung function and quality of life in children with CMD. STUDY DESIGN: We conducted a randomized controlled trial on hyperinsufflation therapy in children with CMD at two centers. An individualized hyperinsufflation regimen of 15 minutes twice daily using a cough assist device over a 12 months period was prescribed. We measured lung function, quality of life, and adherence. To demonstrate reproducibility, pulmonary function was measured twice on the same day. A mixed-effects regression model adjusting for confounders was used to assess the effects of hyperinsufflation. RESULTS: We enrolled 34 participants in the study; 31 completed the trial (n = 17 treatment group and n = 14 controls). Participants in the treatment group demonstrated a relative gain in lung volume measured at 4 and 8 months, but not at 12 months. The control group required increases in the maximum insufflation pressures to achieve maximum lung volumes while the treatment group did not. Adherence was best early in the study, peaking at the first visit and decreasing at subsequent visits. Caregiver-reported quality of life was higher in the treatment group. CONCLUSION: Hyperinsufflation therapy is effective in increasing and sustaining lung volume over time. Adherence, however, was inconsistent and difficult to maintain. Further research should determine if improved adherence leads to sustained benefits of hyperinsufflation.


Assuntos
Insuflação , Distrofias Musculares/terapia , Terapia Respiratória , Adolescente , Criança , Pré-Escolar , Tosse , Feminino , Humanos , Pulmão/fisiopatologia , Medidas de Volume Pulmonar , Masculino , Qualidade de Vida , Reprodutibilidade dos Testes
20.
J Pediatr Orthop ; 40(4): 183-189, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32132448

RESUMO

BACKGROUND: Over the past 100 years, many procedures have been developed for correcting restrictive thoracic deformities which cause thoracic insufficiency syndrome. However, none of them have been assessed by a robust metric incorporating thoracic dynamics. In this paper, we investigate the relationship between radiographic spinal curve and lung volumes derived from thoracic dynamic magnetic resonance imaging (dMRI). Our central hypothesis is that different anteroposterior major spinal curve types induce different restrictions on the left and right lungs and their dynamics. METHODS: Retrospectively, we included 25 consecutive patients with thoracic insufficiency syndrome (14 neuromuscular, 7 congenital, 4 other) who underwent vertical expandable prosthetic titanium rib surgery and received preimplantation and postimplantation thoracic dMRI for clinical care. We measured thoracic and lumbar major curves by the Cobb measurement method from anteroposterior radiographs and classified the curves as per Scoliosis Research Society (SRS)-defined curve types. From 4D dMRI images, we derived static volumes and tidal volumes of left and right lung, along with left and right chest wall and left and right diaphragm tidal volumes (excursions), and analyzed their association with curve type and major curve angles. RESULTS: Thoracic and lumbar major curve angles ranged from 0 to 136 and 0 to 116 degrees, respectively. A dramatic postoperative increase in chest wall and diaphragmatic excursion was seen qualitatively. All components of volume increased postoperatively by up to 533%, with a mean of 70%. As the major curve, main thoracic curve (MTC) was associated with higher tidal volumes (effect size range: 0.7 to 1.0) than thoracolumbar curve (TLC) in preoperative and postoperative situation. Neither MTC nor TLC showed any meaningful correlation between volumes and major curve angles preoperatively or postoperatively. Moderate correlations (0.65) were observed for specific conditions like volumes at end-inspiration or end-expiration. CONCLUSIONS: The relationships between component tidal volumes and the spinal curve type are complex and are beyond intuitive reasoning and guessing. TLC has a much greater influence on restricting chest wall and diaphragm tidal volumes than MTC. Major curve angles are not indicative of passive resting volumes or tidal volumes. LEVEL OF EVIDENCE: Level II-diagnostic.


Assuntos
Imageamento por Ressonância Magnética/métodos , Implantação de Prótese , Insuficiência Respiratória , Costelas/cirurgia , Escoliose , Doenças Torácicas , Adolescente , Criança , Feminino , Humanos , Masculino , Equipamentos Ortopédicos , Implantação de Prótese/efeitos adversos , Implantação de Prótese/instrumentação , Implantação de Prótese/métodos , Insuficiência Respiratória/diagnóstico , Insuficiência Respiratória/etiologia , Insuficiência Respiratória/fisiopatologia , Insuficiência Respiratória/prevenção & controle , Estudos Retrospectivos , Escoliose/complicações , Escoliose/diagnóstico , Escoliose/fisiopatologia , Escoliose/cirurgia , Doenças Torácicas/diagnóstico , Doenças Torácicas/etiologia , Doenças Torácicas/fisiopatologia , Doenças Torácicas/cirurgia , Parede Torácica/diagnóstico por imagem , Parede Torácica/patologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...