Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 143(9): 3655-3661, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33629852

RESUMO

The archetypal single electron transfer reductant, samarium(II) diiodide (SmI2, Kagan's reagent), remains one of the most important reducing agents and mediators of radical chemistry after four decades of widespread use in synthesis. While the chemistry of SmI2 is very often unique, and thus the reagent is indispensable, it is almost invariably used in superstoichiometric amounts, thus raising issues of cost and waste. Of the few reports of the use of catalytic SmI2, all require the use of superstoichiometric amounts of a metal coreductant to regenerate Sm(II). Here, we describe a SmI2-catalyzed intermolecular radical coupling of aryl cyclopropyl ketones and alkynes. The process shows broad substrate scope and delivers a library of decorated cyclopentenes with loadings of SmI2 as low as 15 mol %. The radical relay strategy negates the need for a superstoichiometric coreductant and additives to regenerate SmI2. Crucially, our study uncovers an intriguing link between ketone conformation and efficient cross-coupling and thus provides an insight into the mechanism of radical relays involving SmI2. The study lays further groundwork for the future use of the classical reagent SmI2 in contemporary radical catalysis.

2.
Angew Chem Int Ed Engl ; 59(37): 15918-15922, 2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32463942

RESUMO

Trifluoromethyl sulfoxides are a new class of trifluoromethylthiolating reagent. The sulfoxides engage in metal-free C-H trifluoromethylthiolation with a range of (hetero)arenes. The method is also applicable to the functionalization of important compound classes, such as ligand derivatives and polyaromatics, and in the late-stage trifluoromethylthiolation of medicines and agrochemicals. The isolation and characterization of a sulfonium salt intermediate supports an interrupted Pummerer reaction mechanism.

3.
Chemistry ; 24(41): 10521-10530, 2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-29781115

RESUMO

Benzothiadiazole (BT) directed C-H borylation using BCl3 , followed by B-Cl hydrolysis and Suzuki-Miyaura cross-coupling enables facile access to twisted donor-acceptor compounds. A subsequent second C-H borylation step provides, on arylation of boron, access to borylated highly twisted D-A compounds with a reduced bandgap, or on B-Cl hydrolysis/cross-coupling to twisted D-A-D compounds. Photophysical studies revealed that in this series there is long lifetime emission only when the donor is triphenylamine. Computational studies indicated that the key factor in observing the donor dependent long lifetime emission is the energy gap between the S1 /T2 excited states, which are predominantly intramolecular charge-transfer states, and the T1 excited state, which is predominantly a local excited state on the BT acceptor moiety.

4.
Angew Chem Int Ed Engl ; 57(18): 4995-4999, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29493858

RESUMO

Radical anions generated from urea carbonyls by reductive electron transfer are exploited in carbon-carbon bond formation. New radical cyclizations of urea radical anions deliver complex nitrogen heterocycles and, depending upon the proton source used in the reactions, a chemoselective switch between reaction pathways can deliver two heterobicyclic scaffolds. A computational study has been used to investigate the selectivity of the urea radical processes. Furthermore, radical cyclization cascades involving urea radical anions deliver unusual spirocyclic aminal architectures.

5.
Nat Chem ; 9(12): 1198-1204, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29168498

RESUMO

The rapid generation of molecular complexity from simple starting materials is a key challenge in synthesis. Enantioselective radical cyclization cascades have the potential to deliver complex, densely packed, polycyclic architectures, with control of three-dimensional shape, in one step. Unfortunately, carrying out reactions with radicals in an enantiocontrolled fashion remains challenging due to their high reactivity. This is particularly the case for reactions of radicals generated using the classical reagent, SmI2. Here, we demonstrate that enantioselective SmI2-mediated radical cyclizations and cascades that exploit a simple, recyclable chiral ligand can convert symmetrical ketoesters to complex carbocyclic products bearing multiple stereocentres with high enantio- and diastereocontrol. A computational study has been used to probe the origin of the enantioselectivity. Our studies suggest that many processes that rely on SmI2 can be rendered enantioselective by the design of suitable ligands.

6.
Angew Chem Int Ed Engl ; 56(20): 5527-5530, 2017 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-28407353

RESUMO

The {Cr8 } metallacrown [CrF(O2 Ct Bu)2 ]8 , containing a F-lined internal cavity, shows high selectivity for CO2 over N2 . DFT calculations and absorption studies support the multiple binding of F-groups to the C-center of CO2 (C⋅⋅⋅F 3.190(9)-3.389(9) Å), as confirmed by single-crystal X-ray diffraction.

7.
Chemistry ; 23(32): 7798-7808, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28422350

RESUMO

The theory and computation of EPR parameters from first principles has seen a great deal of development over the past two decades. In particular, various techniques for the computation of the electronic g tensor have been implemented in many quantum chemistry packages. These methods have been successfully applied to paramagnetic organic species and transition metal systems. The situation is less well-understood and established in the case of actinide-containing molecules and there is a dearth of experimental data available for validation of computations. In this study quantum chemical techniques have been used to evaluate the g tensor for UV complexes, for which experimental data are available for comparison. The g tensors were calculated using relatively simple, state-averaged complete active space self-consistent field (SA-CASSCF) calculations. This approach is shown to be capable of providing useful accuracy. Aspects of the computations that should be refined to provide a more quantitative approach are discussed. The key features of the underlying electronic structure that influence the computed g values are delineated, providing a simple physical picture of these subtle molecular properties.

8.
Angew Chem Int Ed Engl ; 55(36): 10755-9, 2016 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-27504722

RESUMO

Atropisomeric biaryl pyridine and isoquinoline N-oxides were synthesized enantioselectively by dynamic kinetic resolution (DKR) of rapidly racemizing precursors exhibiting free bond rotation. The DKR was achieved by ketoreductase (KRED) catalyzed reduction of an aldehyde to form a configurationally stable atropisomeric alcohol, with the substantial increase in rotational barrier arising from the loss of a bonding interaction between the N-oxide and the aldehyde. Use of different KREDs allowed either the M or P enantiomer to be synthesized in excellent enantiopurity. The enantioenriched biaryl N-oxide compounds catalyze the asymmetric allylation of benzaldehyde derivatives with allyltrichlorosilane.

9.
Dalton Trans ; 45(20): 8433-9, 2016 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-27108889

RESUMO

A computational study is presented of a complex of thallium with a neutral ß-triketimine ligand which was found to form dimers with close Tl-Tl interactions. Single point energies, using the crystallographic structures, suggest that the system is bound only when BArF counter ions are included in the calculations. Energy decomposition analysis of the system was carried out in order to investigate the nature of the bonding. Across the methods, calculations show the electrostatic interaction to be repulsive for the dimer with no counter ions, but attractive when BArF counter ions are included. This suggests the metallophilic interaction is counter ion-mediated, requiring the anions to provide favourable electrostatics, even in the case of spatially diffuse and distant counter ions such as the 3,5-bistrifluoromethylphenyl borate ions used here.

10.
Angew Chem Int Ed Engl ; 55(3): 1102-7, 2016 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-26632675

RESUMO

A copper-catalyzed three-component coupling of allenes, bis(pinacolato)diboron, and imines allows regio-, chemo-, and diastereoselective assembly of branched α,ß-substituted-γ-boryl homoallylic amines, that is, products bearing versatile amino, alkenyl, and borane functionality. Alternatively, convenient oxidative workup allows access to α-substituted-ß-amino ketones. A computational study has been used to probe the stereochemical course of the cross-coupling.

11.
Faraday Discuss ; 174: 281-96, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25315989

RESUMO

We report hole mobilities obtained computationally based on both single crystal geometries and those obtained from crystal fragments optimised on a model surface. Such computational estimates can differ considerably from experimentally measured thin film mobilities. One source of this discrepancy is due to a difference in the morphology of the thin film compared with that of the crystal. Here, predictions of thin film hole mobilities based on optimised structures are given. A model surface is used to provide an inert geometric platform for the formation of an organic monolayer. The model is tested on pentacene and TIPS-pentacene for which experimental information of the surface morphology exists. The model has also been applied to four previously uninvestigated structures. Two of the compounds studied had fairly low predicted mobilities in their single crystal structures, which were vastly improved post-optimisation. This is in accord with experiment.

12.
Chem Commun (Camb) ; 50(51): 6754-7, 2014 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-24831495

RESUMO

Stereospecific [3,3]-sigmatropic rearrangement of O-substituted thiocarbamate derivatives of enantiopure allylic alcohols provides allylic thiocarbamates as single enantiomers. Intramolecular arylation by rearrangement of their allyllithium derivatives provides allylic tertiary thiols. Allylation and ring-closing metathesis gives 2,5-dihydrothiophenes containing sulfur-bearing quaternary centres.


Assuntos
Tiofenos/química , Álcoois/química , Compostos Alílicos/química , Dicroísmo Circular , Indicadores e Reagentes , Conformação Molecular , Estereoisomerismo , Enxofre/química , Tiocarbamatos/química
13.
European J Org Chem ; 2013(27): 6038-6041, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25045320

RESUMO

The application of a new benzannulation reaction for the regiocontrolled synthesis of functionalized chrysenes is reported. The initial benzannulation and the subsequent halogen displacement reactions are both highly regiospecific, which thereby enables the regiocontrolled synthesis of a variety of 4,10-disubstituted chrysenes from commercially available 1,5-dihydroxynaphthalene.

14.
J Chem Theory Comput ; 8(12): 4915-21, 2012 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-26593185

RESUMO

We present computations of the zero field splitting constants in a tris-hydroxo bridged chromium dimer (Kremer's dimer). A comparison is given of broken symmetry density functional theory (DFT) and multiconfigurational ab initio methods for evaluating ZFS constants. Kremer's dimer is known to be antiferromagnetically coupled, with the spin ladder order of E(S = 0) < E(S = 1) < E(S = 2) < E(S = 3). The B3LYP functional gives the order E(S = 0) < E(S = 3) < E(S = 1) < E(S = 2), and similar results are obtained for other density functionals (PBE, M06, M06-L, and TPSS). In contrast, we find that simple CASSCF calculations yield a correct spin ladder. DFT poorly reproduces the experimental D splitting values, while the CASSCF technique coupled with quasi-degenerate perturbation theory qualitatively reproduces D for all the spin states. State-optimized orbitals result in more accurate spin state energies and D values compared to state-averaged orbitals. Inclusion of spin-spin coupling is found to be essential for both the magnitude and sign of D. The rhombic splitting parameter is found to be near zero, which is comparable to experimental results for which the analysis assumed C3h symmetry.

15.
Chem Commun (Camb) ; 47(38): 10623-5, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-21881649

RESUMO

The molecular structures, chemical bonding and magnetochemistry of the three-coordinate iron(II) NHC complexes [(NHC)Fe{N(SiMe(3))(2)}(2)] (NHC = IPr, 2; NHC = IMes, 3) are reported.

16.
Dalton Trans ; 40(34): 8533-9, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21727972

RESUMO

An investigation into the physical consequences of including a Jahn-Teller distorted Cu(II) ion within an antiferromagnetically coupled ring, [R(2)NH(2)][Cr(7)CuF(8)((O(2)C(t)Bu)(16))] is reported. Inelastic neutron scattering (INS) and electron paramagnetic resonance (EPR) spectroscopic data are simulated using a microscopic spin Hamiltonian, and show that the two Cr-Cu exchange interactions must be inequivalent. One Cr-Cu exchange is found to be antiferromagnetic and the other ferromagnetic. The geometry of the Jahn-Teller elongation is deduced from these results, and shows that a Jahn-Teller elongation axis must lie in the plane of the Cr(7)Cu wheel; the elongation is not observed by X-ray crystallography, due to positional disorder of the Cu site within the wheel. An electronic structure calculation confirms the structural distortion of the Cu site.

17.
Inorg Chem ; 50(6): 2521-6, 2011 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-21314147

RESUMO

Metallation of hexahydropyrimidopyrimidine (hppH) by [Fe{N(SiMe(3))(2)}(2)] (1) produces the trimetallic iron(II) amide cage complex [{(Me(3)Si)(2)NFe}(2)(hpp)(4)Fe] (2), which contains three iron(II) centers, each of which resides in a distorted tetrahedral environment. An alternative, one-pot route that avoids use of the highly air-sensitive complex 1 is described for the synthesis of the iron(II)-lithium complex [{(Me(3)Si)(2)N}(2)Fe{Li(bta)}](2) (3) (where btaH = benzotriazole), in which both iron(II) centers reside in 3-coordinated pyramidal environments. The structure of 3 is also interpreted in terms of the ring laddering principle developed for alkali metal amides. Magnetic susceptibility measurements reveal that both compounds display very weak antiferromagnetic exchange between the iron(II) centers, and that the iron(II) centers in 2 and 3 possess large negative axial zero-field splittings.


Assuntos
Amidas/química , Compostos Ferrosos/química , Compostos Ferrosos/síntese química , Compostos Heterocíclicos/química , Magnetismo , Ligantes , Modelos Moleculares , Estrutura Molecular , Teoria Quântica
18.
Dalton Trans ; 40(6): 1267-78, 2011 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-21186389

RESUMO

The first examples of vinylidene complexes of the cycloheptatrienyl tungsten system [W(C=CHR)(dppe)(η-C7H7)](+) (dppe = Ph2PCH2CH2PPh2; R = H, 3; Ph, 4; C6H4-4-Me, 5) have been synthesised by reaction of [WBr(dppe)(η-C7H7)], 1, with terminal alkynes HC≡CR; a one-pot synthesis of 1 from [WBr(CO)2(η-C7H7)] facilitates its use as a precursor. The X-ray structure of 4[PF6] reveals that the vinylidene ligand substituents lie in the pseudo mirror plane of the W(dppe)(η-C7H7) auxiliary (vertical orientation) with the phenyl group located syn to the cycloheptatrienyl ring. Variable temperature ¹H NMR investigations on [W(C=CH2)(dppe)(η-C7H7)][PF6], 3, estimate the energy barrier to rotation about the W=C(α) bond as 62.5 ± 2 kJ mol⁻¹; approximately 10 kJ mol⁻¹ greater than for the molybdenum analogue. Deprotonation of 4 and 5 with KOBu(t) yields the alkynyls [W(C≡CR)(dppe)(η-C7H7)] (R = Ph, 6; C6H4-4-Me, 7) which undergo a reversible one-electron oxidation at a glassy carbon electrode in CH2Cl2 with E(½) values approximately 0.12 V negative of Mo analogues. The 17-electron radicals [6](+) and [7](+) have been investigated by spectroelectrochemical IR, UV-visible and EPR methods. The electronic structures of representative vinylidene (3) and alkynyl (6) complexes have been investigated at the B3LYP/Def2-SVP level. In both cases, electronic structure is characterised by a frontier orbital with significant metal d(z²)character and this dominates the structural and spectroscopic properties of the system.

19.
Dalton Trans ; 39(47): 11424-31, 2010 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-20981380

RESUMO

The paramagnetic aryl-alkynyl complexes [Mo(C≡CAr)(dppe)(η-C(7)H(7))](+) (dppe = Ph(2)PCH(2)CH(2)PPh(2); Ar = C(6)H(5), [1](+); C(6)D(5), [2](+); C(6)H(4)-4-F, [3](+); C(6)H(4)-4-Me, [5](+)) and [Mo(C≡CBu(t))(dppe)(η-C(7)H(7))](+) [4](+), have been investigated in a combined EPR and ENDOR study. Direct experimental evidence for the delocalisation of unpaired spin density over the framework of an aryl-alkynyl ligand has been obtained. The X-band solution EPR spectrum of the 4-fluoro derivative, [3](+), exhibits resolved hyperfine coupling to the remote para position of the aryl group [a(iso)((19)F) = 4.5 MHz, (1.6 G)] in addition to couplings attributable to (95/97)Mo, (31)P and (1)H of the C(7)H(7) ring. A full analysis of the (1)H ENDOR spectra is restricted by the low g anisotropy of the system which prevents the use of orientation selection. However, inter-comparison of the (1)H cw-ENDOR frozen solution spectra of [1](+), [2](+), [4](+) and [5](+), combined with spectral simulation informed by calculated values derived from DFT investigations, has facilitated estimation of the experimental a(iso)((1)H) hyperfine couplings of [1](+) including the ortho, ±3.7 MHz (±1.3 G) and para, ±3.9 MHz (±1.4 G) positions of the C(6)H(5) substituent of the aryl-alkynyl ligand.

20.
Inorg Chem ; 49(20): 9136-50, 2010 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-20839799

RESUMO

A large series of complexes has been synthesized with two chelating, Schiff base azobenzene derivatives connected linearly by coordination to a central nickel(II) or palladium(II) ion. These compounds have the general formulas M(II)(OC(6)H(3)-2-CHNR-4-N═NC(6)H(4)-4-CO(2)Et)(2) [M = Ni; R = n-Bu (3c), n-C(6)H(13) (3d), n-C(8)H(17) (3e), n-C(12)H(25) (3f), Ph (3g), OH (3h), C(6)H(4)-4-CO(2)Et (3i). M = Pd; R = i-Pr (4a), t-Bu (4b), n-Bu (4c), n-C(6)H(13) (4d), n-C(8)H(17) (4e), n-C(12)H(25) (4f), Ph (4g)], M(II)[OC(6)H(3)-2-CHN(n-C(8)H(17))-4-N═NC(6)H(4)-4-CO(2)(n-C(8)H(17))](2) [M = Ni (9), Pd (10)], M(II)[OC(6)H(3)-2-CHN(n-C(8)H(17))-4-N═NC(6)H(4)-4-C(6)H(4)-4-O(n-C(7)H(15))](2) [M = Ni (14), Pd (15)], and M(II)[OC(6)H(3)-2-CHN(CMe(2))-4-N═NC(6)H(4)-4-CO(2)Et](2) [M = Ni (17), Pd (18); the CMe(2) groups are connected]. These compounds have been characterized by using various physical techniques including (1)H NMR spectroscopy and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. Single-crystal X-ray structures have been obtained for two pro-ligands and five complexes (3e, 4e, 14, 15, and 17). The latter always show a strictly square planar arrangement about the metal center, except for the Ni(II) complex of a salen-like ligand (17). In solution, broadened (1)H NMR signals indicate distortions from square planar geometry for the bis-chelate Ni(II) complexes. Electronic absorption spectroscopy and ZINDO_S (Zerner's intermediate neglect of differential overlap) and TD-DFT (time-dependent density functional theory) calculations show that the lowest energy transition has metal-to-ligand charge-transfer character. The λ(max) of this band lies in the range of 409-434 nm in dichloromethane, and replacing Ni(II) with Pd(II) causes small blue-shifts. Dichroic ratios measured in various liquid crystal hosts show complexation-induced increases with Ni(II), but using Pd(II) has a detrimental effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...