Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 66(13): 8929-8950, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37314941

RESUMO

An unmet medical need remains for patients suffering from dry eye disease (DED). A fast-acting, better-tolerated noncorticosteroid anti-inflammatory eye drop could improve patient outcomes and quality of life. Herein, we describe a small-molecule drug discovery effort to identify novel, potent, and water-soluble JAK inhibitors as immunomodulating agents for topical ocular disposition. A focused library of known 3-(4-(2-(arylamino)pyrimidin-4-yl)-1H-pyrazol-1-yl)propanenitriles was evaluated as a molecular starting point. Structure-activity relationships (SARs) revealed a ligand-efficient (LE) JAK inhibitor series, amenable to aqueous solubility. Subsequent in vitro analysis indicated the potential for off-target toxicity. A KINOMEscan selectivity profile of 5 substantiated the likelihood of widespread series affinity across the human kinome. An sp2-to-sp3 drug design strategy was undertaken to attenuate off-target kinase activity while driving JAK-STAT potency and aqueous solubility. Tactics to reduce aromatic character, increase fraction sp3 (Fsp3), and bolster molecular complexity led to the azetidin-3-amino bridging scaffold in 31.


Assuntos
Inibidores de Janus Quinases , Humanos , Janus Quinase 1 , Janus Quinase 2 , Janus Quinase 3 , Inibidores de Janus Quinases/farmacologia , Janus Quinases , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Solubilidade
2.
Bioorg Med Chem ; 28(23): 115791, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33059303

RESUMO

GlaxoSmithKline and Astex Pharmaceuticals recently disclosed the discovery of the potent H-PGDS inhibitor GSK2894631A 1a (IC50 = 9.9 nM) as part of a fragment-based drug discovery collaboration with Astex Pharmaceuticals. This molecule exhibited good murine pharmacokinetics, allowing it to be utilized to explore H-PGDS pharmacology in vivo. Yet, with prolonged dosing at higher concentrations, 1a induced CNS toxicity. Looking to attenuate brain penetration in this series, aza-quinolines, were prepared with the intent of increasing polar surface area. Nitrogen substitutions at the 6- and 8-positions of the quinoline were discovered to be tolerated by the enzyme. Subsequent structure activity studies in these aza-quinoline scaffolds led to the identification of 1,8-naphthyridine 1y (IC50 = 9.4 nM) as a potent peripherally restricted H-PGDS inhibitor. Compound 1y is efficacious in four in vivo inflammatory models and exhibits no CNS toxicity.


Assuntos
Compostos Aza/química , Inibidores Enzimáticos/química , Quinolinas/química , Animais , Sítios de Ligação , Encéfalo/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cristalografia por Raios X , Estabilidade de Medicamentos , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Oxirredutases Intramoleculares/antagonistas & inibidores , Oxirredutases Intramoleculares/metabolismo , Cinética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Dinâmica Molecular , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Ratos , Relação Estrutura-Atividade
3.
Skelet Muscle ; 10(1): 30, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33092650

RESUMO

BACKGROUND: Duchenne muscular dystrophy (DMD) is a progressive muscle wasting disorder stemming from a loss of functional dystrophin. Current therapeutic options for DMD are limited, as small molecule modalities remain largely unable to decrease the incidence or mitigate the consequences of repetitive mechanical insults to the muscle during eccentric contractions (ECCs). METHODS: Using a metabolomics-based approach, we observed distinct and transient molecular phenotypes in muscles of dystrophin-deficient MDX mice subjected to ECCs. Among the most chronically depleted metabolites was nicotinamide adenine dinucleotide (NAD), an essential metabolic cofactor suggested to protect muscle from structural and metabolic degeneration over time. We tested whether the MDX muscle NAD pool can be expanded for therapeutic benefit using two complementary small molecule strategies: provision of a biosynthetic precursor, nicotinamide riboside, or specific inhibition of the NAD-degrading ADP-ribosyl cyclase, CD38. RESULTS: Administering a novel, potent, and orally available CD38 antagonist to MDX mice successfully reverted a majority of the muscle metabolome toward the wildtype state, with a pronounced impact on intermediates of the pentose phosphate pathway, while supplementing nicotinamide riboside did not significantly affect the molecular phenotype of the muscle. However, neither strategy sustainably increased the bulk tissue NAD pool, lessened muscle damage markers, nor improved maximal hindlimb strength following repeated rounds of eccentric challenge and recovery. CONCLUSIONS: In the absence of dystrophin, eccentric injury contributes to chronic intramuscular NAD depletion with broad pleiotropic effects on the molecular phenotype of the tissue. These molecular consequences can be more effectively overcome by inhibiting the enzymatic activity of CD38 than by supplementing nicotinamide riboside. However, we found no evidence that either small molecule strategy is sufficient to restore muscle contractile function or confer protection from eccentric injury, undermining the modulation of NAD metabolism as a therapeutic approach for DMD.


Assuntos
Inibidores Enzimáticos/farmacologia , Metaboloma , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/tratamento farmacológico , NAD/metabolismo , Niacinamida/análogos & derivados , Compostos de Piridínio/farmacologia , ADP-Ribosil Ciclase 1/antagonistas & inibidores , Animais , Distrofina/deficiência , Inibidores Enzimáticos/uso terapêutico , Masculino , Glicoproteínas de Membrana/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Contração Muscular , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Niacinamida/farmacologia , Niacinamida/uso terapêutico , Compostos de Piridínio/uso terapêutico
4.
Skelet Muscle ; 8(1): 38, 2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30526662

RESUMO

Following publication of the original article [1], the authors flagged that there is a discrepancy with the Availability of data and materials statement on page 12 of the article.

5.
Skelet Muscle ; 8(1): 35, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30424786

RESUMO

BACKGROUND: In muscular dystrophy and old age, skeletal muscle repair is compromised leading to fibrosis and fatty tissue accumulation. Therefore, therapies that protect skeletal muscle or enhance repair would be valuable medical treatments. Hypoxia-inducible factors (HIFs) regulate gene transcription under conditions of low oxygen, and HIF target genes EPO and VEGF have been associated with muscle protection and repair. We tested the importance of HIF activation following skeletal muscle injury, in both a murine model and human volunteers, using prolyl hydroxylase inhibitors that stabilize and activate HIF. METHODS: Using a mouse eccentric limb injury model, we characterized the protective effects of prolyl hydroxylase inhibitor, GSK1120360A. We then extended these studies to examine the impact of EPO modulation and infiltrating immune cell populations on muscle protection. Finally, we extended this study with an experimental medicine approach using eccentric arm exercise in untrained volunteers to measure the muscle-protective effects of a clinical prolyl hydroxylase inhibitor, daprodustat. RESULTS: GSK1120360A dramatically prevented functional deficits and histological damage, while accelerating recovery after eccentric limb injury in mice. Surprisingly, this effect was independent of EPO, but required myeloid HIF1α-mediated iNOS activity. Treatment of healthy human volunteers with high-dose daprodustat reduced accumulation of circulating damage markers following eccentric arm exercise, although we did not observe any diminution of functional deficits with compound treatment. CONCLUSION: The results of these experiments highlight a novel skeletal muscle protective effect of prolyl hydroxylase inhibition via HIF-mediated expression of iNOS in macrophages. Partial recapitulation of these findings in healthy volunteers suggests elements of consistent pharmacology compared to responses in mice although there are clear differences between these two systems.


Assuntos
Inibidores Enzimáticos/uso terapêutico , Glicina/análogos & derivados , Prolina Dioxigenases do Fator Induzível por Hipóxia/antagonistas & inibidores , Contração Muscular , Músculo Esquelético/efeitos dos fármacos , Mialgia/tratamento farmacológico , Quinolonas/uso terapêutico , Adolescente , Adulto , Animais , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Glicina/farmacologia , Glicina/uso terapêutico , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/lesões , Músculo Esquelético/metabolismo , Mialgia/etiologia , Quinolonas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA