Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(5): 114043, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38642336

RESUMO

Bone is highly susceptible to cancer metastasis, and both tumor and bone cells enable tumor invasion through a "vicious cycle" of biochemical signaling. Tumor metastasis into bone also alters biophysical cues to both tumor and bone cells, which are highly sensitive to their mechanical environment. However, the mechanobiological feedback between these cells that perpetuate this cycle has not been studied. Here, we develop highly advanced in vitro and computational models to provide an advanced understanding of how tumor growth is regulated by the synergistic influence of tumor-bone cell signaling and mechanobiological cues. In particular, we develop a multicellular healthy and metastatic bone model that can account for physiological mechanical signals within a custom bioreactor. These models successfully recapitulated mineralization, mechanobiological responses, osteolysis, and metastatic activity. Ultimately, we demonstrate that mechanical stimulus provided protective effects against tumor-induced osteolysis, confirming the importance of mechanobiological factors in bone metastasis development.

2.
Nat Commun ; 13(1): 7089, 2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36402771

RESUMO

The formation and recovery of gaps in the vascular endothelium governs a wide range of physiological and pathological phenomena, from angiogenesis to tumor cell extravasation. However, the interplay between the mechanical and signaling processes that drive dynamic behavior in vascular endothelial cells is not well understood. In this study, we propose a chemo-mechanical model to investigate the regulation of endothelial junctions as dependent on the feedback between actomyosin contractility, VE-cadherin bond turnover, and actin polymerization, which mediate the forces exerted on the cell-cell interface. Simulations reveal that active cell tension can stabilize cadherin bonds, but excessive RhoA signaling can drive bond dissociation and junction failure. While actin polymerization aids gap closure, high levels of Rac1 can induce junction weakening. Combining the modeling framework with experiments, our model predicts the influence of pharmacological treatments on the junction state and identifies that a critical balance between RhoA and Rac1 expression is required to maintain junction stability. Our proposed framework can help guide the development of therapeutics that target the Rho family of GTPases and downstream active mechanical processes.


Assuntos
Actinas , Células Endoteliais , Células Endoteliais/metabolismo , Actinas/metabolismo , Retroalimentação , Transdução de Sinais , Citoesqueleto de Actina/metabolismo
3.
Exp Cell Res ; 419(2): 113317, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36028058

RESUMO

Computational models can shape our understanding of cell and tissue remodelling, from cell spreading, to active force generation, adhesion, and growth. In this mini-review, we discuss recent progress in modelling of chemo-mechanical cell behaviour and the evolution of multicellular systems. In particular, we highlight recent advances in (i) free-energy based single cell models that can provide new fundamental insight into cell spreading, cancer cell invasion, stem cell differentiation, and remodelling in disease, and (ii) mechanical agent-based models to simulate large numbers of discrete interacting cells in proliferative tumours. We describe how new biological understanding has emerged from such theoretical models, and the trade-offs and constraints associated with current approaches. Ultimately, we aim to make a case for why theory should be integrated with an experimental workflow to optimise new in-vitro studies, to predict feedback between cells and their microenvironment, and to deepen understanding of active cell behaviour.


Assuntos
Modelos Biológicos , Neoplasias , Simulação por Computador , Humanos , Microambiente Tumoral
4.
Cell Rep ; 35(4): 109047, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33909999

RESUMO

Most extracellular matrices (ECMs) are known to be dissipative, exhibiting viscoelastic and often plastic behaviors. However, the influence of dissipation, in particular mechanical plasticity in 3D confining microenvironments, on cell motility is not clear. In this study, we develop a chemo-mechanical model for dynamics of invadopodia, the protrusive structures that cancer cells use to facilitate invasion, by considering myosin recruitment, actin polymerization, matrix deformation, and mechano-sensitive signaling pathways. We demonstrate that matrix dissipation facilitates invadopodia growth by softening ECMs over repeated cycles, during which plastic deformation accumulates via cyclic ratcheting. Our model reveals that distinct protrusion patterns, oscillatory or monotonic, emerge from the interplay of timescales for polymerization-associated extension and myosin recruitment dynamics. Our model predicts the changes in invadopodia dynamics upon inhibition of myosin, adhesions, and the Rho-Rho-associated kinase (ROCK) pathway. Altogether, our work highlights the role of matrix plasticity in invadopodia dynamics and can help design dissipative biomaterials to modulate cancer cell motility.


Assuntos
Matriz Extracelular/metabolismo , Podossomos/metabolismo , Movimento Celular , Retroalimentação , Humanos , Transdução de Sinais
5.
Biophys J ; 120(8): 1323-1332, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33675762

RESUMO

Beyond the critical role of cell nuclei in gene expression and DNA replication, they also have a significant influence on cell mechanosensation and migration. Nuclear stiffness can impact force transmission and, furthermore, act as a physical barrier to translocation across tight spaces. As such, it is of wide interest to accurately characterize nucleus mechanical behavior. In this study, we present a computational investigation of the in situ deformation of a heterogeneous chondrocyte nucleus. A methodology is developed to accurately reconstruct a three-dimensional finite-element model of a cell nucleus from confocal microscopy. By incorporating the reconstructed nucleus into a chondrocyte model embedded in pericellular and extracellular matrix, we explore the relationship between spatially heterogeneous nuclear DNA content, shear stiffness, and resultant shear strain. We simulate an externally applied extracellular matrix shear deformation and compute intranuclear strain distributions, which are directly compared with corresponding experimentally measured distributions. Simulations suggest that the mechanical behavior of the nucleus is highly heterogeneous, with a nonlinear relationship between experimentally measured grayscale values and corresponding local shear moduli (µn). Three distinct phases are identified within the nucleus: a low-stiffness mRNA-rich interchromatin phase (0.17 kPa ≤ µn ≤ 0.63 kPa), an intermediate-stiffness euchromatin phase (1.48 kPa ≤ µn ≤ 2.7 kPa), and a high-stiffness heterochromatin phase (3.58 kPa ≤ µn ≤ 4.0 kPa). Our simulations also indicate that disruption of the nuclear envelope associated with lamin A/C depletion significantly increases nuclear strain in regions of low DNA concentration. We further investigate a phenotypic shift of chondrocytes to fibroblast-like cells, a signature for osteoarthritic cartilage, by increasing the contractility of the actin cytoskeleton to a level associated with fibroblasts. Peak nucleus strains increase by 35% compared to control, with the nucleus becoming more ellipsoidal. Our findings may have broad implications for current understanding of how local DNA concentrations and associated strain amplification can impact cell mechanotransduction and drive cell behavior in development, migration, and tumorigenesis.


Assuntos
Cromatina , Mecanotransdução Celular , Núcleo Celular , Condrócitos , Estresse Mecânico
6.
J Mech Behav Biomed Mater ; 113: 104074, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33189012

RESUMO

Cardiac hypertrophy is an adaption of the heart to a change in cardiovascular loading conditions. The current understanding is that progression may be stress or strain driven, but the multi-scale nature of the cellular remodelling processes have yet to be uncovered. In this study, we develop a model of the contractile left ventricle, with the active cell tension described by a thermodynamically motivated cross-bridge cycling model. Simulation of the transient recruitment of myosin results in correct patterns of ventricular pressure predicted over a cardiac cycle. We investigate how changes in tissue loading and associated deviations in transient force generation can drive restructuring of cellular myofibrils in the heart wall. Our thermodynamic framework predicts in-series sarcomere addition (eccentric remodelling) in response to volume overload, and sarcomere addition in parallel (concentric remodelling) in response to valve and signalling disfunction. This framework provides a significant advance in the current understanding of the fundamental sub-sarcomere level biomechanisms underlying cardiac remodelling. Simulations reveal that pathological tissue loading conditions can significantly alter actin-myosin cross-bridge cycling over the course of the cardiac cycle. The resultant variation in sarcomere stress pushes an imbalance between the internal free energy of the myofibril and that of unbound contractile proteins, initiating remodelling. The link between cross-bridge thermodynamics and myofibril remodelling proposed in this study may significantly advance current understanding of cardiac disease onset.


Assuntos
Ventrículos do Coração , Modelos Cardiovasculares , Contração Muscular , Coração , Miosinas , Termodinâmica
7.
Nat Commun ; 11(1): 6148, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33262337

RESUMO

Sustained proliferation is a significant driver of cancer progression. Cell-cycle advancement is coupled with cell size, but it remains unclear how multiple cells interact to control their volume in 3D clusters. In this study, we propose a mechano-osmotic model to investigate the evolution of volume dynamics within multicellular systems. Volume control depends on an interplay between multiple cellular constituents, including gap junctions, mechanosensitive ion channels, energy-consuming ion pumps, and the actomyosin cortex, that coordinate to manipulate cellular osmolarity. In connected cells, we show that mechanical loading leads to the emergence of osmotic pressure gradients between cells with consequent increases in cellular ion concentrations driving swelling. We identify how gap junctions can amplify spatial variations in cell volume within multicellular spheroids and, further, describe how the process depends on proliferation-induced solid stress. Our model may provide new insight into the role of gap junctions in breast cancer progression.


Assuntos
Neoplasias da Mama/fisiopatologia , Proliferação de Células , Junções Comunicantes/química , Esferoides Celulares/citologia , Neoplasias da Mama/química , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Tamanho Celular , Progressão da Doença , Feminino , Humanos , Pressão Osmótica , Esferoides Celulares/química
8.
J Mech Behav Biomed Mater ; 112: 104024, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33007624

RESUMO

In this study an experimental rig is developed to investigate the influence of tissue constraint and cyclic loading on cell alignment and active cell force generation in uniaxial and biaxial engineered tissues constructs. Addition of contractile cells to collagen hydrogels dramatically increases the measured forces in uniaxial and biaxial constructs under dynamic loading. This increase in measured force is due to active cell contractility, as is evident from the decreased force after treatment with cytochalasin D. Prior to dynamic loading, cells are highly aligned in uniaxially constrained tissues but are uniformly distributed in biaxially constrained tissues, demonstrating the importance of tissue constraints on cell alignment. Dynamic uniaxial stretching resulted in a slight increase in cell alignment in the centre of the tissue, whereas dynamic biaxial stretching had no significant effect on cell alignment. Our active modelling framework accurately predicts our experimental trends and suggests that a slightly higher (3%) total SF formation occurs at the centre of a biaxial tissue compared to the uniaxial tissue. However, high alignment of SFs and lateral compaction in the case of the uniaxially constrained tissue results in a significantly higher (75%) actively generated cell contractile stress, compared to the biaxially constrained tissue. These findings have significant implications for engineering of contractile tissue constructs.


Assuntos
Colágeno , Engenharia Tecidual , Matriz Extracelular , Fibroblastos , Estresse Mecânico
9.
Biomech Model Mechanobiol ; 18(4): 921-937, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30783833

RESUMO

The active cytoskeleton is known to play an important mechanistic role in cellular structure, spreading, and contractility. Contractility is actively generated by stress fibres (SF), which continuously remodel in response to physiological dynamic loading conditions. The influence of actin-myosin cross-bridge cycling on SF remodelling under dynamic loading conditions has not previously been uncovered. In this study, a novel SF cross-bridge cycling model is developed to predict transient active force generation in cells subjected to dynamic loading. Rates of formation of cross-bridges within SFs are governed by the chemical potentials of attached and unattached myosin heads. This transient cross-bridge cycling model is coupled with a thermodynamically motivated framework for SF remodelling to analyse the influence of transient force generation on cytoskeletal evolution. A 1D implementation of the model is shown to correctly predict complex patterns of active cell force generation under a range of dynamic loading conditions, as reported in previous experimental studies.


Assuntos
Células/metabolismo , Fibras de Estresse/fisiologia , Estresse Mecânico , Fenômenos Biomecânicos , Simulação por Computador , Elasticidade , Modelos Biológicos , Miosinas/metabolismo , Dinâmica não Linear , Transdução de Sinais , Viscosidade
10.
Biophys J ; 115(12): 2451-2460, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30527450

RESUMO

Biological spread cells exist in a perpetually fluctuating state and therefore cannot be described in terms of a unique deterministic system. For modeling approaches to provide novel insight and uncover new mechanisms that drive cell behavior, a framework is required that progresses from traditional deterministic methods (whereby simulation of an experiment predicts a single outcome). In this study, we implement a new, to our knowledge, modeling approach for the analysis of cell spreading on ligand-coated substrates, extending the framework for nonequilibrium thermodynamics of cells developed by Shishvan et al. to include active focal adhesion assembly. We demonstrate that the model correctly predicts the coupled influence of surface collagen density and substrate stiffness on cell spreading, as reported experimentally by Engler et al. Low surface collagen densities are shown to result in a high probability that cells will be restricted to low spread areas. Furthermore, elastic free energy induced by substrate deformation lowers the probability of observing a highly spread cell, and, consequentially, lower cell tractions affect the assembly of focal adhesions. Experimentally measurable observables such as cell spread area and aspect ratio can be directly postprocessed from the computed homeostatic ensemble of (several million) spread states. This allows for the prediction of mean and SDs of such experimental observables. This class of cell mechanics modeling presents a significant advance on conventional deterministic approaches.


Assuntos
Elasticidade , Modelos Biológicos , Fenômenos Biomecânicos , Tamanho Celular , Colágeno/metabolismo , Ligantes , Termodinâmica
11.
J Biomech Eng ; 140(8)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30003247

RESUMO

While the anisotropic behavior of the complex composite myocardial tissue has been well characterized in recent years, the compressibility of the tissue has not been rigorously investigated to date. In the first part of this study, we present experimental evidence that passive-excised porcine myocardium exhibits volume change. Under tensile loading of a cylindrical specimen, a volume change of 4.1±1.95% is observed at a peak stretch of 1.3. Confined compression experiments also demonstrate significant volume change in the tissue (loading applied up to a volumetric strain of 10%). In order to simulate the multiaxial passive behavior of the myocardium, a nonlinear volumetric hyperelastic component is combined with the well-established Holzapfel-Ogden anisotropic hyperelastic component for myocardium fibers. This framework is shown to describe the experimentally observed behavior of porcine and human tissues under shear and biaxial loading conditions. In the second part of the study, a representative volumetric element (RVE) of myocardium tissue is constructed to parse the contribution of the tissue vasculature to observed volume change under confined compression loading. Simulations of the myocardium microstructure suggest that the vasculature cannot fully account for the experimentally measured volume change. Additionally, the RVE is subjected to six modes of shear loading to investigate the influence of microscale fiber alignment and dispersion on tissue-scale mechanical behavior.


Assuntos
Força Compressiva , Ventrículos do Coração/citologia , Miocárdio/citologia , Animais , Anisotropia , Fenômenos Biomecânicos , Análise de Elementos Finitos , Suínos
12.
J Mech Behav Biomed Mater ; 74: 283-295, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28646754

RESUMO

In this study we present a steady-state adaptation of the thermodynamically motivated stress fiber (SF) model of Vigliotti et al. (2015). We implement this steady-state formulation in a non-local finite element setting where we also consider global conservation of the total number of cytoskeletal proteins within the cell, global conservation of the number of binding integrins on the cell membrane, and adhesion limiting ligand density on the substrate surface. We present a number of simulations of cell spreading in which we consider a limited subset of the possible deformed spread-states assumed by the cell in order to examine the hypothesis that free energy minimization drives the process of cell spreading. Simulations suggest that cell spreading can be viewed as a competition between (i) decreasing cytoskeletal free energy due to strain induced assembly of cytoskeletal proteins into contractile SFs, and (ii) increasing elastic free energy due to stretching of the mechanically passive components of the cell. The computed minimum free energy spread area is shown to be lower for a cell on a compliant substrate than on a rigid substrate. Furthermore, a low substrate ligand density is found to limit cell spreading. The predicted dependence of cell spread area on substrate stiffness and ligand density is in agreement with the experiments of Engler et al. (2003). We also simulate the experiments of Théry et al. (2006), whereby initially circular cells deform and adhere to "V-shaped" and "Y-shaped" ligand patches. Analysis of a number of different spread states reveals that deformed configurations with the lowest free energy exhibit a SF distribution that corresponds to experimental observations, i.e. a high concentration of highly aligned SFs occurs along free edges, with lower SF concentrations in the interior of the cell. In summary, the results of this study suggest that cell spreading is driven by free energy minimization based on a competition between decreasing cytoskeletal free energy and increasing passive elastic free energy.


Assuntos
Adesão Celular , Proteínas do Citoesqueleto/fisiologia , Modelos Biológicos , Fibras de Estresse/fisiologia , Células Cultivadas , Integrinas/fisiologia , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...