Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 9(10): 3239-3247, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31383721

RESUMO

Genotypes are often used to assign parentage in agricultural and ecological settings. Sequencing can be used to obtain genotypes but does not provide unambiguous genotype calls, especially when sequencing depth is low in order to reduce costs. In that case, standard parentage analysis methods no longer apply. A strategy for using low-depth sequencing data for parentage assignment is developed here. It entails the use of relatedness estimates along with a metric termed excess mismatch rate which, for parent-offspring pairs or trios, is the difference between the observed mismatch rate and the rate expected under a model of inheritance and allele reads without error. When more than one putative parent has similar statistics, bootstrapping can provide a measure of the relatedness similarity. Putative parent-offspring trios can be further checked for consistency by comparing the offspring's estimated inbreeding to half the parent relatedness. Suitable thresholds are required for each metric. These methods were applied to a deer breeding operation consisting of two herds of different breeds. Relatedness estimates were more in line with expectation when the herds were analyzed separately than when combined, although this did not alter which parents were the best matches with each offspring. Parentage results were largely consistent with those based on a microsatellite parentage panel with three discordant parent assignments out of 1561. Two models are investigated to allow the parentage metrics to be calculated with non-random selection of alleles. The tools and strategies given here allow parentage to be assigned from low-depth sequencing data.


Assuntos
Genômica , Genótipo , Técnicas de Genotipagem , Linhagem , Algoritmos , Alelos , Cruzamento , Bases de Dados Genéticas , Família , Frequência do Gene , Genômica/métodos , Repetições de Microssatélites , Modelos Genéticos , Análise de Sequência de DNA
2.
Genetics ; 160(4): 1587-97, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11973312

RESUMO

Comparative maps between ruminant species and humans are increasingly important tools for the discovery of genes underlying economically important traits. In this article we present a primary linkage map of the deer genome derived from an interspecies hybrid between red deer (Cervus elaphus) and Père David's deer (Elaphurus davidianus). The map is approximately 2500 cM long and contains >600 markers including both evolutionary conserved type I markers and highly polymorphic type II markers (microsatellites). Comparative mapping by annotation and sequence similarity (COMPASS) was demonstrated to be a useful tool for mapping bovine and ovine ESTs in deer. Using marker order as a phylogenetic character and comparative map information from human, mouse, deer, cattle, and sheep, we reconstructed the karyotype of the ancestral Pecoran mammal and identified the chromosome rearrangements that have occurred in the sheep, cattle, and deer lineages. The deer map and interspecies hybrid pedigrees described here are a valuable resource for (1) predicting the location of orthologs to human genes in ruminants, (2) mapping QTL in farmed and wild deer populations, and (3) ruminant phylogenetic studies.


Assuntos
Mapeamento Cromossômico , Cervos/genética , Evolução Molecular , Genoma , Animais , Bovinos , Etiquetas de Sequências Expressas , Humanos , Repetições de Microssatélites , Ruminantes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...