Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Direct ; 5(6): e00326, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34136747

RESUMO

Auxin is a hormone that is required for hypocotyl elongation during seedling development. In response to auxin, rapid changes in transcript and protein abundance occur in hypocotyls, and some auxin responsive gene expression is linked to hypocotyl growth. To functionally validate proteomic studies, a reverse genetics screen was performed on mutants in auxin-regulated proteins to identify novel regulators of plant growth. This uncovered a long hypocotyl mutant, which we called slim shady, in an annotated insertion line in IMMUNOREGULATORY RNA-BINDING PROTEIN (IRR). Overexpression of the IRR gene failed to rescue the slim shady phenotype and characterization of a second T-DNA allele of IRR found that it had a wild-type (WT) hypocotyl length. The slim shady mutant has an elevated expression of numerous genes associated with the brassinosteroid-auxin-phytochrome (BAP) regulatory module compared to WT, including transcription factors that regulate brassinosteroid, auxin, and phytochrome pathways. Additionally, slim shady seedlings fail to exhibit a strong transcriptional response to auxin. Using whole genome sequence data and genetic complementation analysis with SALK_015201C, we determined that a novel single nucleotide polymorphism in PHYTOCHROME B was responsible for the slim shady phenotype. This is predicted to induce a frameshift and premature stop codon at leucine 1125, within the histidine kinase-related domain of the carboxy terminus of PHYB, which is required for phytochrome signaling and function. Genetic complementation analyses with phyb-9 confirmed that slim shady is a mutant allele of PHYB. This study advances our understanding of the molecular mechanisms in seedling development, by furthering our understanding of how light signaling is linked to auxin-dependent cell elongation. Furthermore, this study highlights the importance of confirming the genetic identity of research material before attributing phenotypes to known mutations sourced from T-DNA stocks.

2.
Genomics Proteomics Bioinformatics ; 19(5): 800-814, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33607298

RESUMO

Diabrotica virgifera virgifera (western corn rootworm, WCR) is one of the most destructive agricultural insect pests in North America. It is highly adaptive to environmental stimuli and crop protection technologies. However, little is known about the underlying genetic basis of WCR behavior and adaptation. More specifically, the involvement of small RNAs (sRNAs), especially microRNAs (miRNAs), a class of endogenous small non-coding RNAs that regulate various biological processes, has not been examined, and the datasets of putative sRNA sequences have not previously been generated for WCR. To achieve a comprehensive collection of sRNA transcriptomes in WCR, we constructed, sequenced, and analyzed sRNA libraries from different life stages of WCR and northern corn rootworm (NCR), and identified 101 conserved precursor miRNAs (pre-miRNAs) in WCR and other Arthropoda. We also identified 277 corn rootworm specific pre-miRNAs. Systematic analyses of sRNA populations in WCR revealed that its sRNA transcriptome, which includes PIWI-interacting RNAs (piRNAs) and miRNAs, undergoes a dynamic change throughout insect development. Phylogenetic analysis of miRNA datasets from model species reveals that a large pool of species-specific miRNAs exists in corn rootworm; these are potentially evolutionarily transient. Comparisons of WCR miRNA clusters to other insect species highlight conserved miRNA-regulated processes that are common to insects. Parallel Analysis of RNA Ends (PARE) also uncovered potential miRNA-guided cleavage sites in WCR. Overall, this study provides a new resource for studying the sRNA transcriptome and miRNA-mediated gene regulation in WCR and other Coleopteran insects.


Assuntos
Besouros , MicroRNAs , Animais , Besouros/genética , MicroRNAs/genética , Filogenia , Transcriptoma , Zea mays/genética
3.
Plant Cell ; 32(7): 2141-2157, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32327535

RESUMO

Plant cellulose is synthesized by rosette-structured cellulose synthase (CESA) complexes (CSCs). Each CSC is composed of multiple subunits of CESAs representing three different isoforms. Individual CESA proteins contain conserved catalytic domains for catalyzing cellulose synthesis, other domains such as plant-conserved sequences, and class-specific regions that are thought to facilitate complex assembly and CSC trafficking. Because of the current lack of atomic-resolution structures for plant CSCs or CESAs, the molecular mechanism through which CESA catalyzes cellulose synthesis and whether its catalytic activity influences efficient CSC transport at the subcellular level remain unknown. Here, by performing chemical genetic analyses, biochemical assays, structural modeling, and molecular docking, we demonstrate that Endosidin20 (ES20) targets the catalytic site of CESA6 in Arabidopsis (Arabidopsis thaliana). Chemical genetic analysis revealed important amino acids that potentially participate in the catalytic activity of plant CESA6, in addition to previously identified conserved motifs across kingdoms. Using high spatiotemporal resolution live cell imaging, we found that inhibiting the catalytic activity of CESA6 by ES20 treatment reduced the efficiency of CSC transport to the plasma membrane. Our results demonstrate that ES20 is a chemical inhibitor of CESA activity and trafficking that represents a powerful tool for studying cellulose synthesis in plants.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Celulose/biossíntese , Glucosiltransferases/antagonistas & inibidores , Glucosiltransferases/química , Glucosiltransferases/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Recuperação de Fluorescência Após Fotodegradação , Glucosiltransferases/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Simulação de Acoplamento Molecular , Mutação , Plantas Geneticamente Modificadas , Conformação Proteica
4.
Insect Sci ; 25(1): 45-56, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27520841

RESUMO

Western corn rootworm (WCR, Diabrotica virgifera virgifera LeConte) is highly sensitive to orally delivered double-stranded RNA (dsRNA). RNAi in WCR is systemic and spreads throughout the insect body. This raises the question whether transitive RNAi is a mechanism that functions in WCR to amplify the RNAi response via production of secondary siRNA. Secondary siRNA production is achieved through RNA-dependent RNA polymerase (RdRP) activity in other eukaryotic organisms, but RdRP has not been identified in WCR and any other insects. This study visualized the spread of the RNAi-mediated knockdown of Dv v-ATPase C mRNA throughout the WCR gut and other tissues using high-sensitivity branched DNA in situ hybridization. Furthermore, we did not detect either secondary siRNA production or transitive RNAi in WCR through siRNA sequence profile analysis. Nucleotide mismatched sequences introduced into either the sense or antisense strand of v-ATPase C dsRNAs were maintained in siRNAs derived from WCR fed with the mismatched dsRNAs in a strand specific manner. The distribution of all siRNAs was restricted to within the original target sequence regions, which may indicate the lack of new dsRNA synthesis leading to production of secondary siRNA. Thus, the systemic spread of RNAi in WCR may be derived from the original dsRNA molecules taken up from the gut lumen. These results indicate that the initial dsRNA dose is important for a lethal systemic RNAi response in WCR and have implications in developing effective dsRNA traits to control WCR and in resistance management to prolong the durability of RNAi trait technology.


Assuntos
Besouros , Interferência de RNA , Animais , Larva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...