Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 94(17)2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32522855

RESUMO

The human adenovirus (HAdV) protein IX (pIX) is a minor component of the capsid that acts in part to stabilize the hexon-hexon interactions within the mature capsid. Virions lacking pIX have a reduced DNA packaging capacity and exhibit thermal instability. More recently, pIX has been developed as a platform for presentation of large polypeptides, such as fluorescent proteins or large targeting ligands, on the viral capsid. It is not known whether such modifications affect the natural ability of pIX to stabilize the HAdV virion. In this study, we show that addition of large polypeptides to pIX does not alter the natural stability of virions containing sub-wild-type-sized genomes. However, similar virions containing wild-type-sized genomes tend to genetically rearrange, likely due to selective pressure caused by virion instability as a result of compromised pIX function.IMPORTANCE Human adenovirus capsid protein IX (pIX) is involved in stabilizing the virion but has also been developed as a platform for presentation of various polypeptides on the surface of the virion. Whether such modifications affect the ability of pIX to stabilize the virion is unknown. We show that addition of large polypeptides to pIX can reduce both the DNA packaging capacity and the heat stability of the virion, which provides important guidance for the design of pIX-modified vectors.


Assuntos
Adenovírus Humanos/genética , Adenovírus Humanos/fisiologia , Proteínas do Capsídeo/metabolismo , Capsídeo/metabolismo , Empacotamento do DNA/fisiologia , Peptídeos/metabolismo , Vírion/metabolismo , Proteínas do Capsídeo/genética , Linhagem Celular , DNA Viral , Vetores Genéticos , Genoma Viral , Humanos , Ligantes , Vírion/genética
2.
Sci Rep ; 7(1): 13859, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-29066780

RESUMO

Spinal muscular atrophy (SMA) is caused by homozygous mutation of the survival motor neuron 1 (SMN1) gene. Disease severity inversely correlates to the amount of SMN protein produced from the homologous SMN2 gene. We show that SMN protein is naturally released in exosomes from all cell types examined. Fibroblasts from patients or a mouse model of SMA released exosomes containing reduced levels of SMN protein relative to normal controls. Cells overexpressing SMN protein released exosomes with dramatically elevated levels of SMN protein. We observed enhanced quantities of exosomes in the medium from SMN-depleted cells, and in serum from a mouse model of SMA and a patient with Type 3 SMA, suggesting that SMN-depletion causes a deregulation of exosome release or uptake. The quantity of SMN protein contained in the serum-derived exosomes correlated with the genotype of the animal, with progressively less protein in carrier and affected animals compared to wildtype mice. SMN protein was easily detectable in exosomes isolated from human serum, with a reduction in the amount of SMN protein in exosomes from a patient with Type 3 SMA compared to a normal control. Our results suggest that exosome-derived SMN protein may serve as an effective biomarker for SMA.


Assuntos
Exossomos/metabolismo , Atrofia Muscular Espinal/patologia , Proteínas do Complexo SMN/metabolismo , Animais , Biomarcadores/metabolismo , Linhagem Celular , Humanos , Camundongos
3.
Sci Rep ; 6: 28846, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27349908

RESUMO

Motor neuron loss and neurogenic atrophy are hallmarks of spinal muscular atrophy (SMA), a leading genetic cause of infant deaths. Previous studies have focused on deciphering disease pathogenesis in motor neurons. However, a systematic evaluation of atrophy pathways in muscles is lacking. Here, we show that these pathways are differentially activated depending on severity of disease in two different SMA model mice. Although proteasomal degradation is induced in skeletal muscle of both models, autophagosomal degradation is present only in Smn(2B/-) mice but not in the more severe Smn(-/-); SMN2 mice. Expression of FoxO transcription factors, which regulate both proteasomal and autophagosomal degradation, is elevated in Smn(2B/-) muscle. Remarkably, administration of trichostatin A reversed all molecular changes associated with atrophy. Cardiac muscle also exhibits differential induction of atrophy between Smn(2B/-) and Smn(-/-); SMN2 mice, albeit in the opposite direction to that of skeletal muscle. Altogether, our work highlights the importance of cautious analysis of different mouse models of SMA as distinct patterns of atrophy induction are at play depending on disease severity. We also revealed that one of the beneficial impacts of trichostatin A on SMA model mice is via attenuation of muscle atrophy through reduction of FoxO expression to normal levels.


Assuntos
Modelos Animais de Doenças , Atrofia Muscular Espinal/genética , Atrofia Muscular/genética , Transdução de Sinais/genética , Animais , Proteínas de Ciclo Celular , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Expressão Gênica , Humanos , Ácidos Hidroxâmicos/farmacologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/ultraestrutura , Atrofia Muscular/metabolismo , Atrofia Muscular Espinal/metabolismo , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/metabolismo
4.
Virology ; 468-470: 444-453, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25243333

RESUMO

We have investigated whether reducing the overall size of adenovirus (Ad), through use of a vector containing a shortened fibre, leads to enhanced distribution and dissemination of the vector. Intravenous or intraperitoneal injection of Ad5SlacZ (12 nm fibre versus the normal Ad5 37 nm fibre) or Ad5SpKlacZ (shortened fibre with polylysine motif in the H-I loop of fibre knob domain) led to similar levels of lacZ expression compared to Ad5LlacZ (native Ad5 fibre) in the liver of treated animals, but did not enhance extravasation into the tibialis anterior muscle. Direct injection of the short-fibre vectors into the tibialis anterior muscle did not result in enhanced spread of the vector through muscle tissue, and led to only sporadic transgene expression in the spinal cord, suggesting that modifying the fibre length or redirecting viral infection to a more common cell surface receptor does not enhance motor neuron uptake or retrograde transport.


Assuntos
Adenovírus Humanos/fisiologia , Técnicas de Transferência de Genes , Músculo Esquelético/virologia , Proteínas Virais/metabolismo , Adenovírus Humanos/genética , Adenovírus Humanos/metabolismo , Animais , Proteínas do Capsídeo/genética , Linhagem Celular , Regulação Viral da Expressão Gênica , Vetores Genéticos , Camundongos , Neurônios Motores/metabolismo , Neurônios Motores/virologia , Receptores Virais , Transgenes , Proteínas Virais/genética
5.
Biochem Cell Biol ; 91(4): 252-64, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23859020

RESUMO

Spinal muscular atrophy (SMA) is the most common inherited neurodegenerative disease that leads to infant mortality. It is caused by mutations in the survival motor neuron (SMN) protein resulting in death of alpha motor neurons. Increasing evidence suggests that several other tissues are also affected in SMA, including skeletal and cardiac muscle, liver, and pancreas, indicating that systemic delivery of therapeutics may be necessary for true disease correction. Due to the natural biodistribution of therapeutics, a level of SMN several-fold above physiological levels can be achieved in some tissues. In this study, we address whether supraphysiological levels of SMN adversely affects cell function. Infection of a variety of cell types with an adenovirus (Ad) vector encoding SMN leads to very high expression, but the resulting protein correctly localizes within the cell, and associates with normal cellular partners. Although SMN affects transcription of certain target genes and can alter the splicing pattern of others, we did not observe any difference in select target gene splicing or expression in cells overexpressing SMN. However, normal human fibroblasts treated with Ad-SMN showed a slight reduction in growth rate, suggesting that certain cell types may be differently impacted by high levels of SMN.


Assuntos
Adenoviridae/genética , Regulação da Expressão Gênica , Vetores Genéticos , Atrofia Muscular Espinal/metabolismo , Processamento Alternativo , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células , Fibroblastos/citologia , Terapia Genética/métodos , Células HEK293 , Células HeLa , Humanos , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/patologia , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Proteína 2 de Sobrevivência do Neurônio Motor/metabolismo
6.
Viruses ; 5(6): 1500-15, 2013 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-23771241

RESUMO

Vectors based on adenovirus (Ad) are one of the most commonly utilized platforms for gene delivery to cells in molecular biology studies and in gene therapy applications. Ad is also the most popular vector system in human clinical gene therapy trials, largely due to its advantageous characteristics such as high cloning capacity (up to 36 kb), ability to infect a wide variety of cell types and tissues, and relative safety due to it remaining episomal in transduced cells. The latest generation of Ad vectors, helper-dependent Ad (hdAd), which are devoid of all viral protein coding sequences, can mediate high-level expression of a transgene for years in a variety of species ranging from rodents to non-human primates. Given the importance of histones and chromatin in modulating gene expression within the host cell, it is not surprising that Ad, a nuclear virus, also utilizes these proteins to protect the genome and modulate virus- or vector-encoded genes. In this review, we will discuss our current understanding of the contribution of chromatin to Ad vector function.


Assuntos
Adenovírus Humanos/genética , Adenovírus Humanos/fisiologia , Cromatina/metabolismo , Vetores Genéticos , Replicação Viral , Regulação Viral da Expressão Gênica , Terapia Genética/métodos , Humanos , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...