Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 134(11)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702076

RESUMO

Sarcopenia burdens the older population through loss of muscle energy and mass, yet treatments to functionally rescue both parameters are lacking. The glucocorticoid prednisone remodels muscle metabolism on the basis of frequency of intake, but its mechanisms in sarcopenia are unknown. We found that once-weekly intermittent prednisone administration rescued muscle quality in aged 24-month-old mice to a level comparable to that seen in young 4-month-old mice. We discovered an age- and sex-independent glucocorticoid receptor transactivation program in muscle encompassing peroxisome proliferator-activated receptor γ coactivator 1 α (PGC1α) and its cofactor Lipin1. Treatment coordinately improved mitochondrial abundance through isoform 1 and muscle mass through isoform 4 of the myocyte-specific PGC1α, which was required for the treatment-driven increase in carbon shuttling from glucose oxidation to amino acid biogenesis. We also probed myocyte-specific Lipin1 as a nonredundant factor coaxing PGC1α upregulation to the stimulation of both oxidative and anabolic effects. Our study unveils an aging-resistant druggable program in myocytes for the coordinated rescue of energy and mass in sarcopenia.


Assuntos
Envelhecimento , Glucocorticoides , Músculo Esquelético , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fosfatidato Fosfatase , Sarcopenia , Animais , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Sarcopenia/metabolismo , Sarcopenia/tratamento farmacológico , Sarcopenia/patologia , Sarcopenia/genética , Camundongos , Envelhecimento/metabolismo , Fosfatidato Fosfatase/genética , Fosfatidato Fosfatase/metabolismo , Glucocorticoides/farmacologia , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Masculino , Modelos Animais de Doenças , Feminino
2.
bioRxiv ; 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38585940

RESUMO

Genetic variations in the glucocorticoid receptor (GR) gene NR3C1 can impact metabolism. The single nucleotide polymorphism (SNP) rs6190 (p.R23K) has been associated in humans with enhanced metabolic health, but the SNP mechanism of action remains completely unknown. We generated a transgenic knock-in mice genocopying this polymorphism to elucidate how the mutant GR impacts metabolism. Compared to non-mutant littermates, mutant mice showed increased muscle insulin sensitivity and strength on regular chow and high-fat diet, blunting the diet-induced adverse effects on weight gain and exercise intolerance. Overlay of RNA-seq and ChIP-seq profiling in skeletal muscle revealed increased transactivation of Foxc1 and Arid5A genes by the mutant GR. Using adeno-associated viruses for in vivo overexpression in muscle, we found that Foxc1 was sufficient to transcriptionally activate the insulin response pathway genes Insr and Irs1. In parallel, Arid5a was sufficient to transcriptionally repress the lipid uptake genes Cd36 and Fabp4, reducing muscle triacylglycerol accumulation. Collectively, our findings identify a muscle-autonomous epigenetic mechanism of action for the rs6190 SNP effect on metabolic homeostasis, while leveraging a human nuclear receptor coding variant to unveil Foxc1 and Arid5a as novel epigenetic regulators of muscle metabolism.

3.
bioRxiv ; 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37905062

RESUMO

Sarcopenia burdens the elderly population through loss of muscle energy and mass, yet treatments to functionally rescue both parameters are missing. The glucocorticoid prednisone remodels muscle metabolism based on frequency of intake, but its mechanisms in sarcopenia are unknown. We found that once-weekly intermittent prednisone rescued muscle quality in aged 24-month-old mice to levels comparable to young 4-month-old mice. We discovered an age- and sex-independent glucocorticoid receptor transactivation program in muscle encompassing PGC1alpha and its co-factor Lipin1. Treatment coordinately improved mitochondrial abundance through isoform 1 and muscle mass through isoform 4 of the myocyte-specific PGC1alpha, which was required for the treatment-driven increase in carbon shuttling from glucose oxidation to amino acid biogenesis. We also probed the myocyte-specific Lipin1 as non-redundant factor coaxing PGC1alpha upregulation to the stimulation of both oxidative and anabolic capacities. Our study unveils an aging-resistant druggable program in myocytes to coordinately rescue energy and mass in sarcopenia.

4.
Bioengineering (Basel) ; 10(7)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37508888

RESUMO

Rete ridges play multiple important roles in native skin tissue function, including enhancing skin strength, but they are largely absent from engineered tissue models and skin substitutes. Laser micropatterning of fibroblast-containing dermal templates prior to seeding of keratinocytes was shown to facilitate rete ridge development in engineered skin (ES) both in vitro and in vivo. However, it is unknown whether rete ridge development results exclusively from the microarchitectural features formed by ablative processing or whether laser treatment causes an inflammatory response that contributes to rete ridge formation. In this study, laser-micropatterned and non-laser- treated ES grafts were developed and assessed during culture and for four weeks post grafting onto full-thickness wounds in immunodeficient mice. Decreases in inflammatory cytokine secretion were initially observed in vitro in laser-treated grafts compared to non-treated controls, although cytokine levels were similar in both groups five days after laser treatment. Post grafting, rete ridge-containing ES showed a significant increase in vascularization at week 2, and in collagen deposition and biomechanics at weeks 2 and 4, compared with controls. No differences in inflammatory cytokine expression after grafting were observed between groups. The results suggest that laser micropatterning of ES to create rete ridges improves the mechanical properties of healed skin grafts without increasing inflammation.

5.
bioRxiv ; 2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38187555

RESUMO

Circadian time of intake determines the cardioprotective outcome of glucocorticoids in normal and infarcted hearts. The cardiomyocyte-specific glucocorticoid receptor (GR) is genetically required to preserve normal heart function in the long-term. The GR co-factor KLF15 is a pleiotropic regulator of cardiac metabolism. However, the cardiomyocyte-autonomous metabolic targets of the GR-KLF15 concerted epigenetic action remain undefined. Here we report that circadian time of intake determines the activation of a transcriptional and functional glucose oxidation program in heart by the glucocorticoid prednisone with comparable magnitude between sexes. We overlayed transcriptomics, epigenomics and cardiomyocyte-specific inducible ablation of either GR or KLF15. Downstream of a light-phase prednisone stimulation in mice, we found that both factors are non-redundantly required in heart to transactivate the adiponectin receptor expression (Adipor1) and promote insulin-stimulated glucose uptake, as well as transactivate the mitochondrial pyruvate complex expression (Mpc1/2) and promote pyruvate oxidation. We then challenged this time-specific drug effect in obese diabetic db/db mice, where the heart shows insulin resistance and defective glucose oxidation. Opposite to dark-phase dosing, light-phase prednisone rescued glucose oxidation in db/db cardiomyocytes and diastolic function in db/db hearts towards control-like levels with sex-independent magnitude of effect. In summary, our study identifies novel cardiomyocyte-autonomous metabolic targets of the GR-KLF15 concerted program mediating the time-specific cardioprotective effects of glucocorticoids on cardiomyocyte glucose utilization.

6.
Plast Reconstr Surg Glob Open ; 10(11): e4680, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36448015

RESUMO

Keloids are disfiguring, scar-like lesions that are challenging to treat, with low response rates to current interventions and frequent recurrence. It has been widely reported that keloids are characterized by myofibroblasts, specialized contractile fibroblasts that express alpha-smooth muscle actin (α-SMA). However, evidence supporting a role for myofibroblasts in keloid pathology is inconclusive, with conflicting reports in the literature. This complicates development of more effective therapies, as the benefit of interventions targeting myofibroblasts is unclear. This study was undertaken to determine whether myofibroblasts can be considered characteristic of keloids. Methods: Myofibroblasts in tissue sections from keloids, hypertrophic scars (HTSs), and normal skin were localized by α-SMA immunostaining. Expression of α-SMA mRNA (ACTA2 gene) in normal skin and keloid tissue, and in fibroblasts from normal skin, keloid, and HTSs, was measured using quantitative polymerase chain reaction. Results: Normal skin did not exhibit α-SMA-expressing myofibroblasts, but myofibroblasts were identified in 50% of keloids and 60% of HTSs. No significant differences in ACTA2 expression between keloid and normal skin tissue were observed. Mean ACTA2 expression was higher in HTS (2.54-fold, P = 0.005) and keloid fibroblasts (1.75-fold, P = 0.046) versus normal fibroblasts in vitro. However, α-SMA expression in keloids in vivo was not associated with elevated ACTA2 in keloid fibroblasts in vitro. Conclusions: Despite elevated ACTA2 in cultured keloid fibroblasts, myofibroblast presence is not a consistent feature of keloids. Therefore, therapies that target myofibroblasts may not be effective for all keloids. Further research is required to define the mechanisms driving keloid formation for development of more effective therapies.

7.
Nat Commun ; 13(1): 5286, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36075927

RESUMO

Neutrino oscillation experiments at accelerator energies aim to establish charge-parity violation in the neutrino sector by measuring the energy-dependent rate of νe appearance and νµ disappearance in a νµ beam. These experiments can precisely measure νµ cross sections at near detectors, but νe cross sections are poorly constrained and require theoretical inputs. In particular, quantum electrodynamics radiative corrections are different for electrons and muons. These corrections are proportional to the small quantum electrodynamics coupling α ≈ 1/137; however, the large separation of scales between the neutrino energy and the proton mass (~GeV), and the electron mass and soft-photon detection thresholds (~MeV) introduces large logarithms in the perturbative expansion. The resulting flavor differences exceed the percent-level experimental precision and depend on nonperturbative hadronic structure. We establish a factorization theorem for exclusive charged-current (anti)neutrino scattering cross sections representing them as a product of two factors. The first factor is flavor universal; it depends on hadronic and nuclear structure and can be constrained by high-statistics νµ data. The second factor is non-universal and contains logarithmic enhancements, but can be calculated exactly in perturbation theory. For charged-current elastic scattering, we demonstrate the cancellation of uncertainties in the predicted ratio of νe and νµ cross sections. We point out the potential impact of non-collinear energetic photons and the distortion of the visible lepton spectra, and provide precise predictions for inclusive observables.

8.
STAR Protoc ; 3(1): 101172, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35199036

RESUMO

Four types of primary cells-dermal fibroblasts, dermal microvascular endothelial cells, epidermal keratinocytes, and epidermal melanocytes-can be isolated simultaneously from a single human skin sample, without the use of xenogeneic murine feeder cells. This protocol describes the procedures for isolation of these cells from adult full-thickness skin obtained from surgical discard tissue. The cells isolated using this protocol contain stem cell populations and are competent to form functional skin tissue in three-dimensional reconstructed skin models. For complete details on the use and execution of this profile, please refer to Supp et al. (2002), Boyce et al. (2015), Boyce et al. (2017a), Boyce et al. (2017b), and Supp et al. (2019).


Assuntos
Células Endoteliais , Pele , Animais , Células Epidérmicas , Células Alimentadoras , Humanos , Queratinócitos , Camundongos , Pele/irrigação sanguínea
9.
Biotechnol Bioeng ; 119(6): 1439-1449, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35182429

RESUMO

The production of biologics that treat complex diseases, such as cancer, autoimmune, and infectious disease, requires careful monitoring and control of cell cultures. While bioprocess optimizations have dramatically improved production yields, a lack of analytical tools has made it challenging to identify accompanying intracellular improvements. Intracellular redox can diminish the growth and productivity of biologics-producing cells and adversely impact product quality profiles yet characterizing redox is challenging due to its complex and highly transient nature. In this study, we integrated a fluorescent thiol-based redox biosensor to monitor intracellular redox in one bisAb- and two monoclonal antibody-producing clonal cell lines in a 14-day fed-batch bioreactor. We characterized biosensor functionality using three fluorescence measurement techniques and determined sensor oxidation correlates with the intracellular ratio of reduced (GSH) and oxidized glutathione (GSSG), an important cellular antioxidant. Our fed-batch bioreactor studies showed that sensor expression minimally affected bioprocess outcomes, including growth, productivity, product quality attributes, or intracellular redox attributes, including mitochondrial reactive oxygen species and total cellular GSH levels in all cell lines tested. Biosensor measurements taken throughout the culture revealed that the intracellular environment in these cell lines became more reduced throughout the culture, with the exception of a high pH condition which became more oxidized. Our results demonstrate the potential of using biosensors to monitor intracellular changes in near-real-time with minimal process effects, thus potentially improving future bioprocess optimizations.


Assuntos
Produtos Biológicos , Glutationa , Animais , Células CHO , Cricetinae , Cricetulus , Glutationa/metabolismo , Oxirredução
10.
Biotechnol Bioeng ; 119(1): 102-117, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34647616

RESUMO

The N-glycan pattern of an IgG antibody, attached at a conserved site within the fragment crystallizable (Fc) region, is a critical antibody quality attribute whose structural variability can also impact antibody function. For tailoring the Fc glycoprofile, glycoengineering in cell lines as well as Fc amino acid mutations have been applied. Multiple glycoengineered Chinese hamster ovary cell lines were generated, including defucosylated (FUT8KO), α-2,6-sialylated (ST6KI), and defucosylated α-2,6-sialylated (FUT8KOST6KI), expressing either a wild-type anti-CD20 IgG (WT) or phenylalanine to alanine (F241A) mutant. Matrix-assisted laser desorption ionization-time of flight mass spectrometry characterization of antibody N-glycans revealed that the F241A mutation significantly increased galactosylation and sialylation content and glycan branching. Furthermore, overexpression of recombinant human α-2,6-sialyltransferase resulted in a predominance of α-2,6-sialylation rather than α-2,3-sialylation for both WT and heavily sialylated F241A antibody N-glycans. Interestingly, knocking out α-1,6-fucosyltransferase (FUT8KO), which removed core fucose, lowered the content of N-glycans with terminal Gal and increased levels of terminal GlcNAc and Man5 groups on WT antibody. Further complement-dependent cytotoxicity (CDC) analysis revealed that, regardless of the production cells, WT antibody samples have higher cytotoxic CDC activity with more exposed Gal residues compared to their individual F241A mutants. However, the FUT8KO WT antibody, with a large fraction of bi-GlcNAc structures (G0), displayed the lowest CDC activity of all WT antibody samples. Furthermore, for the F241A mutants, a higher CDC activity was observed for α-2,6- compared to α-2,3-sialylation. Antibody-dependent cellular cytotoxicity (ADCC) analysis revealed that the defucosylated WT and F241A mutants showed enhanced in vitro ADCC performance compared to their fucosylated counterparts, with the defucosylated WT antibodies displaying the highest overall ADCC activity, regardless of sialic acid substitution. Moreover, the FcγRIIIA receptor binding by antibodies did not always correspond directly with ADCC result. This study demonstrates that glycoengineering and protein engineering can both promote and inhibit antibody effector functions and represent practical approaches for varying glycan composition and functionalities during antibody development.


Assuntos
Imunoglobulina G , Polissacarídeos , Engenharia de Proteínas/métodos , Animais , Citotoxicidade Celular Dependente de Anticorpos/genética , Células CHO , Cricetinae , Cricetulus , Fucose/química , Fucose/metabolismo , Glicosilação , Fragmentos Fc das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/imunologia , Imunoglobulina G/química , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Mutação/genética , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia
11.
Curr Opin Biotechnol ; 71: 49-54, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34243034

RESUMO

Engineered Chinese hamster ovary (CHO) cells are the most widely utilized cell line for protein-based therapeutics production at industrial scales. Process development strategies which improve production capacity and quality are often implemented without an understanding of underlying intracellular changes. Intracellular redox conditions drive reactions in pathways critical to biologics production, including bioenergetic and biosynthetic pathways, necessitating methods to quantify redox-related changes. Advances in methods for analytical redox quantification presented here, including bioreactor probes, redox-targeted proteomics, genetically encoded redox-sensitive fluorescent proteins, and biochemical assays, are creating new opportunities to characterize the effects of redox in biologics production. Implementing these methods will lead to enhanced media formulations, improved bioprocess strategies, and new cell line engineering targets and ultimately develop redox into an optimizable bioprocess parameter to improve the yield and quality of these lifesaving medicines.


Assuntos
Engenharia Celular , Proteômica , Animais , Células CHO , Cricetinae , Cricetulus , Oxirredução
12.
Wound Repair Regen ; 29(5): 777-791, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33811779

RESUMO

Keloids are fibroproliferative lesions resulting from an abnormal wound healing process due to pathological mechanisms that remain incompletely understood. Keloids tend to occur more frequently in anterior versus posterior body regions (e.g., ears, face, upper torso); this has been attributed to higher skin tension in those areas, although this has not yet been conclusively proven. Previous studies reported reduced expression of multiple homeobox (HOX) genes in keloid versus normal fibroblasts, suggesting a role for HOX genes in keloid pathology. However, HOX genes are differentially expressed along the anterior-posterior axis. Hypothetically, differential HOX expression may be due to differences in body sites, as matched donor sites are often unavailable for keloids and normal skin. To better understand the basis for differential HOX gene expression in cells from keloids compared with normal skin, we compared HOXA7, HOXA9, HOXC8 and HOXC11 expression in keloid and normal skin-derived fibroblasts from various body sites. When keloid (N = 20) and normal (N = 12) fibroblast cell strains were evaluated, expression of HOXA7, HOXA9 and HOXC8 was significantly lower in keloid versus normal fibroblasts. However, HOX gene expression was lower in fibroblasts from more anterior versus posterior body sites. When keloid and normal cells from similar body sites were compared, differential HOX expression was not observed. To investigate the phenotypic relevance of HOX expression, HOXA9 was overexpressed in keloid and normal fibroblasts. HOXA9 overexpression did not affect proliferation but significantly reduced fibroblast migration and altered gene expression. The results suggest that differential HOX expression may be due to differences in positional identity between keloid and normal fibroblasts. However, HOX genes can potentially regulate fibroblast phenotype, suggesting that differential HOX gene expression may play a role in keloid development in anterior body sites.


Assuntos
Queloide , Células Cultivadas , Fibroblastos/patologia , Expressão Gênica , Genes Homeobox/genética , Humanos , Queloide/genética , Queloide/patologia , Cicatrização/genética
13.
Acta Biomater ; 102: 287-297, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31805407

RESUMO

Rete ridges are interdigitations of the epidermis and dermis of the skin that play multiple roles in homeostasis, including enhancing adhesion via increased contact area and acting as niches for epidermal stem cells. These structures, however, are generally absent from engineered skin (ES). To develop ES with rete ridges, human fibroblast-seeded dermal templates were treated with a fractional CO2 laser, creating consistently spaced wells at the surface. Constructs with and without laser treatment were seeded with keratinocytes, cultured for 10 days, and grafted onto athymic mice for four weeks. Rete-ridge like structures were observed in the laser-patterned (ridged) samples at the time of grafting and were maintained in vivo. Ridged grafts displayed improved barrier function over non-lasered (flat) grafts at the time of grafting and 4 weeks post-grafting. Presence of ridges in vivo corresponded with increased keratinocyte proliferation, epidermal area, and basement membrane length. These results suggest that this method can be utilized to develop engineered skin grafts with rete ridges, that the ridge pattern is stable for at least 4 weeks post-grafting, and that the presence of these ridges enhances epidermal proliferation and establishment of barrier function. STATEMENT OF SIGNIFICANCE: Rete ridges play a role in epidermal homeostasis, enhance epidermal-dermal adhesion and act as niches for epidermal stem cells. Despite their role in skin function, these structures are not directly engineered into synthetic skin. A new method to rapidly and reproducibly generate rete ridges in engineered skin was developed using fractional CO2 laser ablation. The resulting engineered rete ridges aided in the establishment of epidermal barrier function, basement membrane protein deposition and epidermal regeneration. This new model of engineered skin with rete ridges could be utilized as an in vitro system to study epidermal stem cells, a testbed for pharmaceutical evaluation or translated for clinical use in full-thickness wound repair.


Assuntos
Colágeno/química , Pele/metabolismo , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Adulto , Animais , Dióxido de Carbono , Feminino , Fibroblastos/metabolismo , Expressão Gênica/fisiologia , Humanos , Lasers , Camundongos , Pele/citologia , Transplante de Pele , Engenharia Tecidual/instrumentação
14.
Antibodies (Basel) ; 8(3)2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-31544849

RESUMO

With the current biotherapeutic market dominated by antibody molecules, bispecific antibodies represent a key component of the next-generation of antibody therapy. Bispecific antibodies can target two different antigens at the same time, such as simultaneously binding tumor cell receptors and recruiting cytotoxic immune cells. Structural diversity has been fast-growing in the bispecific antibody field, creating a plethora of novel bispecific antibody scaffolds, which provide great functional variety. Two common formats of bispecific antibodies on the market are the single-chain variable fragment (scFv)-based (no Fc fragment) antibody and the full-length IgG-like asymmetric antibody. Unlike the conventional monoclonal antibodies, great production challenges with respect to the quantity, quality, and stability of bispecific antibodies have hampered their wider clinical application and acceptance. In this review, we focus on these two major bispecific types and describe recent advances in the design, production, and quality of these molecules, which will enable this important class of biologics to reach their therapeutic potential.

15.
MAbs ; 11(8): 1502-1514, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31379298

RESUMO

Although process intensification by continuous operation has been successfully applied in the chemical industry, the biopharmaceutical industry primarily uses fed-batch, rather than continuous or perfusion methods, to produce stable monoclonal antibodies (mAbs) from Chinese hamster ovary (CHO) cells. Conventional fed-batch bioreactors may start with an inoculation viable cell density (VCD) of ~0.5 × 106 cells/mL. Increasing the inoculation VCD in the fed-batch production bioreactor (referred to as N stage bioreactor) to 2-10 × 106 cells/mL by introducing perfusion operation or process intensification at the seed step (N-1 step) prior to the production bioreactor has recently been used because it increases manufacturing output by shortening cell culture production duration. In this study, we report that increasing the inoculation VCD significantly improved the final titer in fed-batch production within the same 14-day duration for 3 mAbs produced by 3 CHO GS cell lines. We also report that other non-perfusion methods at the N-1 step using either fed batch or batch mode with enriched culture medium can similarly achieve high N-1 final VCD of 22-34 × 106 cells/mL. These non-perfusion N-1 seeds supported inoculation of subsequent production fed-batch production bioreactors at increased inoculation VCD of 3-6 × 106 cells/mL, where these achieved titer and product quality attributes comparable to those inoculated using the perfusion N-1 seeds demonstrated in both 5-L bioreactors, as well as scaled up to 500-L and 1000-L N-stage bioreactors. To operate the N-1 step using batch mode, enrichment of the basal medium was critical at both the N-1 and subsequent intensified fed-batch production steps. The non-perfusion N-1 methodologies reported here are much simpler alternatives in operation for process development, process characterization, and large-scale commercial manufacturing compared to perfusion N-1 seeds that require perfusion equipment, as well as preparation and storage vessels to accommodate large volumes of perfusion media. Although only 3 stable mAbs produced by CHO cell cultures are used in this study, the basic principles of the non-perfusion N-1 seed strategies for shortening seed train and production culture duration or improving titer should be applicable to other protein production by different mammalian cells and other hosts at any scale biologics facilities.


Assuntos
Anticorpos Monoclonais/biossíntese , Técnicas de Cultura Celular por Lotes , Reatores Biológicos , Animais , Células CHO , Cricetulus , Humanos
16.
Cell Transplant ; 28(9-10): 1242-1256, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31271052

RESUMO

The blistering disease recessive dystrophic epidermolysis bullosa (RDEB) is caused by mutations in the gene encoding collagen VII (COL7), which forms anchoring fibrils that attach the epidermis to the dermis. Cutaneous gene therapy to restore COL7 expression in RDEB patient cells has been proposed, and cultured epithelial autograft containing COL7-modified keratinocytes was previously tested in clinical trials. Because COL7 in normal skin is expressed in both fibroblasts and keratinocytes, cutaneous gene therapy using a bilayer skin substitute may enable faster restoration of anchoring fibrils. Hypothetically, COL7 expression in either dermal fibroblasts or epidermal keratinocytes might be sufficient for functional anchoring fibril formation in a bilayer skin substitute. To test this, engineered skin substitutes (ESS) were prepared using four combinations of normal + RDEB cells: (1) RDEB fibroblasts + RDEB keratinocytes; (2) RDEB fibroblasts + normal keratinocytes; (3) normal fibroblasts + RDEB keratinocytes; and (4) normal fibroblasts + normal keratinocytes. ESS were incubated in vitro for 2 weeks prior to grafting to full-thickness wounds in immunodeficient mice. Biopsies were analyzed in vitro and at 1, 2, or 3 weeks after grafting. COL7 was undetectable in ESS prepared using all RDEB cells (group 1), and macroscopic blistering was observed by 2 weeks after grafting in ESS containing RDEB cells. COL7 was expressed, in vitro and in vivo, in ESS prepared using combinations of normal + RDEB cells (groups 2 and 3) or all normal cells (group 4). However, transmission electron microscopy revealed structurally normal anchoring fibrils, in vitro and by week 2 in vivo, only in ESS prepared using all normal cells (group 4). The results suggest that although COL7 protein is produced in engineered skin when cells in only one layer express the COL7 gene, formation of structurally normal anchoring fibrils appears to require expression of COL7 in both dermal fibroblasts and epidermal keratinocytes.


Assuntos
Colágeno Tipo VII/biossíntese , Fibroblastos , Regulação da Expressão Gênica , Queratinócitos , Pele Artificial , Engenharia Tecidual , Adulto , Animais , Colágeno Tipo VII/genética , Epidermólise Bolhosa Distrófica/genética , Epidermólise Bolhosa Distrófica/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibroblastos/transplante , Xenoenxertos , Humanos , Queratinócitos/metabolismo , Queratinócitos/patologia , Queratinócitos/transplante , Masculino , Camundongos , Mutação , Cicatrização , Ferimentos e Lesões/genética , Ferimentos e Lesões/metabolismo , Ferimentos e Lesões/patologia
17.
PLoS One ; 14(3): e0213325, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30835771

RESUMO

Engineered skin substitutes (ESS), prepared using primary human fibroblasts and keratinocytes with a biopolymer scaffold, were shown to provide stable closure of excised burns, but relatively little is known about innervation of ESS after grafting. This study investigated innervation of ESS and, specifically, whether Merkel cells are present in healed grafts. Merkel cells are specialized neuroendocrine cells required for fine touch sensation in skin. We discovered cells positive for keratin 20 (KRT20), a general marker for Merkel cells, in the basal epidermis of ESS after transplantation to mice, suggesting the presence of Merkel cells. Cells expressing KRT20 were not observed in ESS in vitro. However, widely separated KRT20-positive cells were observed in basal epidermis of ESS by 2 weeks after grafting. By 4 weeks, these cells increased in number and expressed keratins 18 and 19, additional Merkel cells markers. Putative Merkel cell numbers increased further between weeks 6 and 14; their densities varied widely and no specific pattern of organization was observed, similar to Merkel cell localization in human skin. KRT20-positive cells co-expressed epidermal markers E-cadherin and keratin 15, suggesting derivation from the epidermal lineage, and neuroendocrine markers synaptophysin and chromogranin A, consistent with their identification as Merkel cells. By 4 weeks after grafting, some Merkel cells in engineered skin were associated with immature afferents expressing neurofilament-medium. By 8 weeks, Merkel cells were complexed with more mature neurons expressing neurofilament-heavy. Positive staining for human leukocyte antigen demonstrated that the Merkel cells in ESS were derived from grafted human cells. The results identify, for the first time, Merkel cell-neurite complexes in engineered skin in vivo. This suggests that fine touch sensation may be restored in ESS after grafting, although this must be confirmed with future functional studies.


Assuntos
Queratinócitos/citologia , Células de Merkel/citologia , Neurônios/citologia , Transplante de Pele/métodos , Pele Artificial , Engenharia Tecidual/métodos , Cicatrização , Adolescente , Animais , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/fisiologia , Humanos , Queratinócitos/fisiologia , Células de Merkel/fisiologia , Camundongos , Camundongos SCID , Neurônios/fisiologia , Tato/fisiologia
18.
Plast Reconstr Surg ; 143(2): 310e-321e, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30688890

RESUMO

BACKGROUND: Pressure garment therapy, used for reduction of postburn scarring, is commonly initiated after complete healing of the wound or autograft. Although some clinicians have suggested that earlier treatment may improve outcomes, the effect of early initiation of therapy has not been studied in a controlled environment. METHODS: Full-thickness burns were created on red Duroc pigs, burn eschar was excised, and the wound bed was grafted with split-thickness autografts. Grafts were treated with pressure garments immediately, 1 week (early), or 5 weeks (delayed) after grafting with nontreated grafts as controls. Scar morphology, biomechanics, and gene expression were measured at multiple time points up to 17 weeks after grafting. RESULTS: Grafts that received pressure within 1 week after grafting exhibited no reduction in engraftment rates. Immediate and early application of pressure resulted in scars with decreased contraction, reduced scar thickness, and improved biomechanics compared with controls. Pressure garment therapy did not alter expression of collagen I, collagen III, or transforming growth factor ß1 at the time points investigated; however, expression of matrix metalloproteinase 1 was significantly elevated in the immediate pressure garment therapy group at week 3, whereas the delayed pressure garment therapy and control groups approached baseline levels at this time point. CONCLUSIONS: Early application of pressure garments is safe and effective for reducing scar thickness and contraction and improving biomechanics. This preclinical study suggests that garments should be applied as soon as possible after grafting to achieve greatest benefit, although clinical studies are needed to validate the findings in humans.


Assuntos
Queimaduras/terapia , Cicatriz/prevenção & controle , Bandagens Compressivas , Transplante de Pele/métodos , Cicatrização/fisiologia , Animais , Fenômenos Biomecânicos , Biópsia por Agulha , Queimaduras/patologia , Cicatriz/patologia , Terapia Combinada , Modelos Animais de Doenças , Imuno-Histoquímica , Escala de Gravidade do Ferimento , Cuidados Pós-Operatórios/métodos , Distribuição Aleatória , Suínos , Fatores de Tempo , Transplante Autólogo/métodos
19.
Acta Biomater ; 80: 247-257, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30218778

RESUMO

Engineered skin (ES) offers many advantages over split-thickness skin autografts for the treatment of burn wounds. However, ES, both in vitro and after grafting, is often significantly weaker, less elastic and more compliant than normal human skin. Biomechanical properties of ES can be tuned in vitro using electrospun co-axial (CoA) scaffolds. To explore the potential for coaxial scaffold-based ES use in vivo, two CoA scaffolds were fabricated with bioactive gelatin shells and biodegradable synthetic cores of polylactic acid (PLA) and polycaprolactone (PCL), and compared with gelatin monofilament scaffolds. Fibroblast and macrophage production of inflammatory cytokines interleukin 6 (IL-6) and transforming growth factor ß-1 was significantly higher when cultured on PLA and PCL monofilament scaffolds compared to gelatin monofilament scaffolds. The core-shell fiber configuration significantly reduced production of pro-inflammatory cytokines to levels similar to those of gelatin monofilament scaffolds. In vitro, ES mechanical properties were significantly enhanced using CoA scaffolds; however, after grafting CoA- and gelatin-based ES to full-thickness excisional wounds on athymic mice, the in vitro mechanical advantage of CoA grafts was lost. A substantially increased inflammatory response to CoA-based ES was observed, with upregulation of IL-6 expression and a significant M2 macrophage presence. Additionally, expression of matrix metalloproteinase I was upregulated and collagen type I alpha 1 was downregulated in CoA ES two weeks after grafting. These results suggest that while coaxial scaffolds provide the ability to regulate biomechanics in vitro, further investigation of the inflammatory response to core materials is required to optimize this strategy for clinical use. STATEMENT OF SIGNIFICANCE: Engineered skin has been used to treat very large burn injuries. Despite its ability to heal these wounds, engineered skin exhibits reduced biomechanical properties making it challenging to manufacture and surgically apply. Coaxial fiber scaffolds have been utilized to tune the mechanical properties of engineered skin while maintaining optimal biological properties but it is not known how these perform on a patient especially with regards to their inflammatory response. The current study examines the biomechanical and inflammatory properties of coaxial scaffolds and uniaxial scaffolds in vitro and in vivo. The results show that the biological response to the scaffold materials is a critical determinant of tissue properties after grafting with reduced inflammation and rapid scaffold remodeling leading to stronger skin.


Assuntos
Inflamação/patologia , Transplante de Pele , Pele Artificial , Pele/patologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Fenômenos Biomecânicos , Cadeia alfa 1 do Colágeno Tipo I , Citocinas/metabolismo , Módulo de Elasticidade , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Humanos , Camundongos Nus , Poliésteres/química , Estresse Mecânico , Resistência à Tração
20.
Burns ; 44(4): 917-930, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29661554

RESUMO

Animal models provide a way to investigate scar therapies in a controlled environment. It is necessary to produce uniform, reproducible scars with high anatomic and biologic similarity to human scars to better evaluate the efficacy of treatment strategies and to develop new treatments. In this study, scar development and maturation were assessed in a porcine full-thickness burn model with immediate excision and split-thickness autograft coverage. Red Duroc pigs were treated with split-thickness autografts of varying thickness: 0.026in. ("thin") or 0.058in. ("thick"). Additionally, the thin skin grafts were meshed and expanded at 1:1.5 or 1:4 to evaluate the role of skin expansion in scar formation. Overall, the burn-excise-autograft model resulted in thick, raised scars. Treatment with thick split-thickness skin grafts resulted in less contraction and reduced scarring as well as improved biomechanics. Thin skin autograft expansion at a 1:4 ratio tended to result in scars that contracted more with increased scar height compared to the 1:1.5 expansion ratio. All treatment groups showed Matrix Metalloproteinase 2 (MMP2) and Transforming Growth Factor ß1 (TGF-ß1) expression that increased over time and peaked 4 weeks after grafting. Burns treated with thick split-thickness grafts showed decreased expression of pro-inflammatory genes 1 week after grafting, including insulin-like growth factor 1 (IGF-1) and TGF-ß1, compared to wounds treated with thin split-thickness grafts. Overall, the burn-excise-autograft model using split-thickness autograft meshed and expanded to 1:1.5 or 1:4, resulted in thick, raised scars similar in appearance and structure to human hypertrophic scars. This model can be used in future studies to study burn treatment outcomes and new therapies.


Assuntos
Autoenxertos/anatomia & histologia , Queimaduras/cirurgia , Cicatriz Hipertrófica/patologia , Cicatriz/patologia , Transplante de Pele/métodos , Animais , Autoenxertos/metabolismo , Queimaduras/complicações , Cicatriz/etiologia , Cicatriz/metabolismo , Cicatriz Hipertrófica/etiologia , Cicatriz Hipertrófica/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Tamanho do Órgão , Sus scrofa , Suínos , Fator de Crescimento Transformador beta1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA