Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Med Genet A ; : e63579, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436550

RESUMO

Due to the majority of currently available genome data deriving from individuals of European ancestry, the clinical interpretation of genomic variants in individuals from diverse ethnic backgrounds remains a major diagnostic challenge. Here, we investigated the genetic cause of a complex neurodevelopmental phenotype in two Palestinian siblings. Whole exome sequencing identified a homozygous missense TECPR2 variant (Chr14(GRCh38):g.102425085G>A; NM_014844.5:c.745G>A, p.(Gly249Arg)) absent in gnomAD, segregating appropriately with the inheritance pattern in the family. Variant assessment with in silico pathogenicity prediction and protein modeling tools alongside population database frequencies led to classification as a variant of uncertain significance. As pathogenic TECPR2 variants are associated with hereditary sensory and autonomic neuropathy with intellectual disability, we reviewed previously published candidate TECPR2 missense variants to clarify clinical outcomes and variant classification using current approved guidelines, classifying a number of published variants as of uncertain significance. This work highlights genomic healthcare inequalities and the challenges in interpreting rare genetic variants in populations underrepresented in genomic databases. It also improves understanding of the clinical and genetic spectrum of TECPR2-related neuropathy and contributes to addressing genomic data disparity and inequalities of the genomic architecture in Palestinian populations.

2.
Brain ; 146(11): 4547-4561, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37459438

RESUMO

SLC4A10 is a plasma-membrane bound transporter that utilizes the Na+ gradient to drive cellular HCO3- uptake, thus mediating acid extrusion. In the mammalian brain, SLC4A10 is expressed in principal neurons and interneurons, as well as in epithelial cells of the choroid plexus, the organ regulating the production of CSF. Using next generation sequencing on samples from five unrelated families encompassing nine affected individuals, we show that biallelic SLC4A10 loss-of-function variants cause a clinically recognizable neurodevelopmental disorder in humans. The cardinal clinical features of the condition include hypotonia in infancy, delayed psychomotor development across all domains and intellectual impairment. Affected individuals commonly display traits associated with autistic spectrum disorder including anxiety, hyperactivity and stereotyped movements. In two cases isolated episodes of seizures were reported in the first few years of life, and a further affected child displayed bitemporal epileptogenic discharges on EEG without overt clinical seizures. While occipitofrontal circumference was reported to be normal at birth, progressive postnatal microcephaly evolved in 7 out of 10 affected individuals. Neuroradiological features included a relative preservation of brain volume compared to occipitofrontal circumference, characteristic narrow sometimes 'slit-like' lateral ventricles and corpus callosum abnormalities. Slc4a10 -/- mice, deficient for SLC4A10, also display small lateral brain ventricles and mild behavioural abnormalities including delayed habituation and alterations in the two-object novel object recognition task. Collapsed brain ventricles in both Slc4a10-/- mice and affected individuals suggest an important role of SLC4A10 in the production of the CSF. However, it is notable that despite diverse roles of the CSF in the developing and adult brain, the cortex of Slc4a10-/- mice appears grossly intact. Co-staining with synaptic markers revealed that in neurons, SLC4A10 localizes to inhibitory, but not excitatory, presynapses. These findings are supported by our functional studies, which show the release of the inhibitory neurotransmitter GABA is compromised in Slc4a10-/- mice, while the release of the excitatory neurotransmitter glutamate is preserved. Manipulation of intracellular pH partially rescues GABA release. Together our studies define a novel neurodevelopmental disorder associated with biallelic pathogenic variants in SLC4A10 and highlight the importance of further analyses of the consequences of SLC4A10 loss-of-function for brain development, synaptic transmission and network properties.


Assuntos
Convulsões , Simportadores de Sódio-Bicarbonato , Criança , Camundongos , Humanos , Animais , Simportadores de Sódio-Bicarbonato/genética , Simportadores de Sódio-Bicarbonato/metabolismo , Convulsões/genética , Mutação/genética , Neurotransmissores , Ácido gama-Aminobutírico/genética , Mamíferos/metabolismo , Antiportadores de Cloreto-Bicarbonato/genética , Antiportadores de Cloreto-Bicarbonato/metabolismo
3.
PLoS Genet ; 18(3): e1010114, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35298461

RESUMO

The highly evolutionarily conserved transport protein particle (TRAPP) complexes (TRAPP II and III) perform fundamental roles in subcellular trafficking pathways. Here we identified biallelic variants in TRAPPC10, a component of the TRAPP II complex, in individuals with a severe microcephalic neurodevelopmental disorder. Molecular studies revealed a weakened interaction between mutant TRAPPC10 and its putative adaptor protein TRAPPC2L. Studies of patient lymphoblastoid cells revealed an absence of TRAPPC10 alongside a concomitant absence of TRAPPC9, another key TRAPP II complex component associated with a clinically overlapping neurodevelopmental disorder. The TRAPPC9/10 reduction phenotype was recapitulated in TRAPPC10-/- knockout cells, which also displayed a membrane trafficking defect. Notably, both the reduction in TRAPPC9 levels and the trafficking defect in these cells could be rescued by wild type but not mutant TRAPPC10 gene constructs. Moreover, studies of Trappc10-/- knockout mice revealed neuroanatomical brain defects and microcephaly, paralleling findings seen in the human condition as well as in a Trappc9-/- mouse model. Together these studies confirm autosomal recessive TRAPPC10 variants as a cause of human disease and define TRAPP-mediated pathomolecular outcomes of importance to TRAPPC9 and TRAPPC10 mediated neurodevelopmental disorders in humans and mice.


Assuntos
Microcefalia , Transtornos do Neurodesenvolvimento , Animais , Humanos , Camundongos , Microcefalia/genética , Transtornos do Neurodesenvolvimento/genética , Fenótipo
4.
Br J Neurosurg ; 35(6): 696-702, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34148477

RESUMO

INTRODUCTION: There are a number of prognostic markers (methylation, CDKN2A/B) described to be useful for the stratification of meningiomas. However, there are currently no clinically validated biomarkers for the preoperative prediction of meningioma grade, which is determined by the histological analysis of tissue obtained from surgery. Accurate preoperative biomarkers would inform the pre-surgical assessment of these tumours, their grade and prognosis and refine the decision-making process for treatment. This review is focused on the more controversial grade II tumours, where debate still surrounds the need for adjuvant therapy, repeat surgery and frequency of follow up. METHODS: We evaluated current literature for potential grade II meningioma clinical biomarkers, focusing on radiological, biochemical (blood assays) and immunohistochemical markers for diagnosis and prognosis, and how they can be used to differentiate them from grade I meningiomas using the post-2016 WHO classification. To do this, we conducted a PUBMED, SCOPUS, OVID SP, SciELO, and INFORMA search using the keywords; 'biomarker', 'diagnosis', 'atypical', 'meningioma', 'prognosis', 'grade I', 'grade 1', 'grade II' and 'grade 2'. RESULTS: We identified 1779 papers, 20 of which were eligible for systematic review according to the defined inclusion and exclusion criteria. From the review, we identified radiological characteristics (irregular tumour shape, tumour growth rate faster than 3cm3/year, high peri-tumoural blood flow), blood markers (low serum TIMP1/2, high serum HER2, high plasma Fibulin-2) and histological markers (low H3K27me3, low SMARCE1, low AKAP12, high ARIDB4) that may aid in differentiating grade II from grade I meningiomas. CONCLUSION: Being able to predict meningioma grade at presentation using the radiological and blood markers described may influence management as the likely grade II tumours will be followed up or treated more aggressively, while the histological markers may prognosticate progression or post-treatment recurrence. This to an extent offers a more personalised treatment approach for patients.


Assuntos
Neoplasias Meníngeas , Meningioma , Biomarcadores Tumorais , Proteínas Cromossômicas não Histona , Terapia Combinada , Proteínas de Ligação a DNA , Humanos , Neoplasias Meníngeas/diagnóstico por imagem , Neoplasias Meníngeas/cirurgia , Meningioma/diagnóstico por imagem , Meningioma/cirurgia , Recidiva Local de Neoplasia , Prognóstico
5.
Eur J Hum Genet ; 29(10): 1570-1576, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34012134

RESUMO

Isolated mitochondrial complex II deficiency is a rare cause of mitochondrial respiratory chain disease. To date biallelic variants in three genes encoding mitochondrial complex II molecular components have been unequivocally associated with mitochondrial disease (SDHA/SDHB/SDHAF1). Additionally, variants in one further complex II component (SDHD) have been identified as a candidate cause of isolated mitochondrial complex II deficiency in just two unrelated affected individuals with clinical features consistent with mitochondrial disease, including progressive encephalomyopathy and lethal infantile cardiomyopathy. We present clinical and genomic investigations in four individuals from an extended Palestinian family with clinical features consistent with an autosomal recessive mitochondrial complex II deficiency, in which our genomic studies identified a homozygous NM_003002.3:c.[205 G > A];[205 G > A];p.[(Glu69Lys)];[(Glu69Lys)] SDHD variant as the likely cause. Reviewing previously published cases, these findings consolidate disruption of SDHD function as a cause of mitochondrial complex II deficiency and further define the phenotypic spectrum associated with SDHD gene variants.


Assuntos
Complexo II de Transporte de Elétrons/deficiência , Erros Inatos do Metabolismo/genética , Doenças Mitocondriais/genética , Mutação de Sentido Incorreto , Succinato Desidrogenase/genética , Criança , Complexo II de Transporte de Elétrons/genética , Feminino , Homozigoto , Humanos , Recém-Nascido , Masculino , Erros Inatos do Metabolismo/patologia , Doenças Mitocondriais/patologia , Fenótipo , Adulto Jovem
6.
Br J Neurosurg ; 35(3): 352-357, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32924618

RESUMO

PURPOSE: Intradural arachnoid cyst is a rare complication of lumbar puncture, post-trauma or post-intraoperative durotomies. We aim to estimate the incidence of early intradural arachnoid cyst radiologically in non-instrumented posterior lumbar decompression among symptomatic patients, and establish clinical correlation. MATERIALS AND METHODS: Patients who underwent lumbar decompression without instrumentation at a tertiary spinal service between December 2014 and January 2018 were identified. When MRI scans were performed post-operatively within 14 days, imaging, medical and operative records were reviewed by two consultant neuroradiologists. RESULTS: 488 operations were included. 46 operations were followed by an early MRI scan. 59% were requested to investigate new or ongoing pain. Ten demonstrated an intradural arachnoid cyst - seven had no documented durotomy. Eight were primary operations, three were emergency operations. Statistically, we have not identified durotomy, primary-vs-revision surgery, and elective-vs-emergency surgery as risk factors. Two patients required revision operations, of these, one had a repeat post-operative scan, where the cyst resolved following further decompression at the index level, without intradural exploration. CONCLUSIONS: Intradural arachnoid cyst may complicate posterior lumbar decompression. To our knowledge, this is the first study to assess its incidence as an early post-operative radiological finding, which is likely to be commoner than we recognise. It may be a cause of persisting post-operative pain.


Assuntos
Cistos Aracnóideos , Cistos Aracnóideos/diagnóstico por imagem , Cistos Aracnóideos/cirurgia , Descompressão , Humanos , Região Lombossacral/cirurgia , Imageamento por Ressonância Magnética , Radiografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...