Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE/ACM Trans Comput Biol Bioinform ; 18(3): 1130-1141, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-31484128

RESUMO

Visualization of biological mechanisms by means of pathway graphs is necessary to better understand the often complex underlying system. Manual layout of such pathways or maps of knowledge is a difficult and time consuming process. Node duplication is a technique that makes layouts with improved readability possible by reducing edge crossings and shortening edge lengths in drawn diagrams. In this article, we propose an approach using Machine Learning (ML) to facilitate parts of this task by training a Support Vector Machine (SVM) with actions taken during manual biocuration. Our training input is a series of incremental snapshots of a diagram describing mechanisms of a disease, progressively curated by a human expert employing node duplication in the process. As a test of the trained SVM models, they are applied to a single large instance and 25 medium-sized instances of hand-curated biological pathways. Finally, in a user validation study, we compare the model predictions to the outcome of a node duplication questionnaire answered by users of biological pathways with varying experience. We successfully predicted nodes for duplication and emulated human choices, demonstrating that our approach can effectively learn human-like node duplication preferences to support curation of pathway diagrams in various contexts.


Assuntos
Biologia Computacional/métodos , Aprendizado de Máquina , Modelos Biológicos , Apresentação de Dados , Humanos , Transdução de Sinais , Máquina de Vetores de Suporte
2.
Brief Bioinform ; 21(1): 62-72, 2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-30289443

RESUMO

The use of signalling pathway hypergraphs represented as process description diagrams is steadily becoming more pervasive in the field of biology. This makes ever more evident the necessity for an effective automated layout that can replicate high-quality manually drawn diagrams. The complexity and idiosyncrasies of these diagrams, as well as the specific tasks the end users perform with them, mean that a layout must meet many requirements beyond the simple metrics used in existing automated computational approaches. In this paper we outline these requirements, examine existing ones and describe new ones. We demonstrate state-of-the-art layout techniques enhanced with novel functionalities to meet part of the requirements. For comparatively small signalling pathways our enhanced algorithm provides results close to manually drawn layouts. In addition, we suggest technical approaches that may be suited for fulfilling the identified requirements currently not covered.

3.
BMC Bioinformatics ; 18(1): 233, 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-28464793

RESUMO

BACKGROUND: Recent advances in high-throughput sequencing allow for much deeper exploitation of natural and engineered microbial communities, and to unravel so-called "microbial dark matter" (microbes that until now have evaded cultivation). Metagenomic analyses result in a large number of genomic fragments (contigs) that need to be grouped (binned) in order to reconstruct draft microbial genomes. While several contig binning algorithms have been developed in the past 2 years, they often lack consensus. Furthermore, these software tools typically lack a provision for the visualization of data and bin characteristics. RESULTS: We present ICoVeR, the Interactive Contig-bin Verification and Refinement tool, which allows the visualization of genome bins. More specifically, ICoVeR allows curation of bin assignments based on multiple binning algorithms. Its visualization window is composed of two connected and interactive main views, including a parallel coordinates view and a dimensionality reduction plot. To demonstrate ICoVeR's utility, we used it to refine disparate genome bins automatically generated using MetaBAT, CONCOCT and MyCC for an anaerobic digestion metagenomic (AD microbiome) dataset. Out of 31 refined genome bins, 23 were characterized with higher completeness and lower contamination in comparison to their respective, automatically generated, genome bins. Additionally, to benchmark ICoVeR against a previously validated dataset, we used Sharon's dataset representing an infant gut metagenome. CONCLUSIONS: ICoVeR is an open source software package that allows curation of disparate genome bins generated with automatic binning algorithms. It is freely available under the GPLv3 license at https://git.list.lu/eScience/ICoVeR . The data management and analytical functions of ICoVeR are implemented in R, therefore the software can be easily installed on any system for which R is available. Installation and usage guide together with the example files ready to be visualized are also provided via the project wiki. ICoVeR running instance preloaded with AD microbiome and Sharon's datasets can be accessed via the website.


Assuntos
Algoritmos , Bases de Dados Genéticas , Metagenoma/genética , Metagenômica/métodos , Software , Microbioma Gastrointestinal/genética , Genoma Microbiano/genética , Humanos , Lactente
4.
BMC Bioinformatics ; 18(Suppl 2): 21, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28251869

RESUMO

BACKGROUND: Understanding complicated networks of interactions and chemical components is essential to solving contemporary problems in modern biology, especially in domains such as cancer and systems research. In these domains, biological pathway data is used to represent chains of interactions that occur within a given biological process. Visual representations can help researchers understand, interact with, and reason about these complex pathways in a number of ways. At the same time, these datasets offer unique challenges for visualization, due to their complexity and heterogeneity. RESULTS: Here, we present taxonomy of tasks that are regularly performed by researchers who work with biological pathway data. The generation of these tasks was done in conjunction with interviews with several domain experts in biology. These tasks require further classification than is provided by existing taxonomies. We also examine existing visualization techniques that support each task, and we discuss gaps in the existing visualization space revealed by our taxonomy. CONCLUSIONS: Our taxonomy is designed to support the development and design of future biological pathway visualization applications. We conclude by suggesting future research directions based on our taxonomy and motivated by the comments received by our domain experts.


Assuntos
Biologia Computacional/métodos , Projetos de Pesquisa , Software , Algoritmos , Bases de Dados Factuais , Pesquisa Empírica , Humanos , Proteínas/química , Proteínas/genética , Inquéritos e Questionários
5.
NPJ Syst Biol Appl ; 2: 16020, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28725475

RESUMO

Our growing knowledge about various molecular mechanisms is becoming increasingly more structured and accessible. Different repositories of molecular interactions and available literature enable construction of focused and high-quality molecular interaction networks. Novel tools for curation and exploration of such networks are needed, in order to foster the development of a systems biology environment. In particular, solutions for visualization, annotation and data cross-linking will facilitate usage of network-encoded knowledge in biomedical research. To this end we developed the MINERVA (Molecular Interaction NEtwoRks VisuAlization) platform, a standalone webservice supporting curation, annotation and visualization of molecular interaction networks in Systems Biology Graphical Notation (SBGN)-compliant format. MINERVA provides automated content annotation and verification for improved quality control. The end users can explore and interact with hosted networks, and provide direct feedback to content curators. MINERVA enables mapping drug targets or overlaying experimental data on the visualized networks. Extensive export functions enable downloading areas of the visualized networks as SBGN-compliant models for efficient reuse of hosted networks. The software is available under Affero GPL 3.0 as a Virtual Machine snapshot, Debian package and Docker instance at http://r3lab.uni.lu/web/minerva-website/. We believe that MINERVA is an important contribution to systems biology community, as its architecture enables set-up of locally or globally accessible SBGN-oriented repositories of molecular interaction networks. Its functionalities allow overlay of multiple information layers, facilitating exploration of content and interpretation of data. Moreover, annotation and verification workflows of MINERVA improve the efficiency of curation of networks, allowing life-science researchers to better engage in development and use of biomedical knowledge repositories.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...