Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
2.
Am J Hum Genet ; 111(3): 487-508, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38325380

RESUMO

Pathogenic variants in multiple genes on the X chromosome have been implicated in syndromic and non-syndromic intellectual disability disorders. ZFX on Xp22.11 encodes a transcription factor that has been linked to diverse processes including oncogenesis and development, but germline variants have not been characterized in association with disease. Here, we present clinical and molecular characterization of 18 individuals with germline ZFX variants. Exome or genome sequencing revealed 11 variants in 18 subjects (14 males and 4 females) from 16 unrelated families. Four missense variants were identified in 11 subjects, with seven truncation variants in the remaining individuals. Clinical findings included developmental delay/intellectual disability, behavioral abnormalities, hypotonia, and congenital anomalies. Overlapping and recurrent facial features were identified in all subjects, including thickening and medial broadening of eyebrows, variations in the shape of the face, external eye abnormalities, smooth and/or long philtrum, and ear abnormalities. Hyperparathyroidism was found in four families with missense variants, and enrichment of different tumor types was observed. In molecular studies, DNA-binding domain variants elicited differential expression of a small set of target genes relative to wild-type ZFX in cultured cells, suggesting a gain or loss of transcriptional activity. Additionally, a zebrafish model of ZFX loss displayed an altered behavioral phenotype, providing additional evidence for the functional significance of ZFX. Our clinical and experimental data support that variants in ZFX are associated with an X-linked intellectual disability syndrome characterized by a recurrent facial gestalt, neurocognitive and behavioral abnormalities, and an increased risk for congenital anomalies and hyperparathyroidism.


Assuntos
Hiperparatireoidismo , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Masculino , Feminino , Animais , Humanos , Deficiência Intelectual/patologia , Peixe-Zebra/genética , Mutação de Sentido Incorreto/genética , Fatores de Transcrição/genética , Fenótipo , Transtornos do Neurodesenvolvimento/genética
3.
Genet Med ; 26(5): 101076, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38258669

RESUMO

PURPOSE: Genome sequencing (GS)-specific diagnostic rates in prospective tightly ascertained exome sequencing (ES)-negative intellectual disability (ID) cohorts have not been reported extensively. METHODS: ES, GS, epigenetic signatures, and long-read sequencing diagnoses were assessed in 74 trios with at least moderate ID. RESULTS: The ES diagnostic yield was 42 of 74 (57%). GS diagnoses were made in 9 of 32 (28%) ES-unresolved families. Repeated ES with a contemporary pipeline on the GS-diagnosed families identified 8 of 9 single-nucleotide variations/copy-number variations undetected in older ES, confirming a GS-unique diagnostic rate of 1 in 32 (3%). Episignatures contributed diagnostic information in 9% with GS corroboration in 1 of 32 (3%) and diagnostic clues in 2 of 32 (6%). A genetic etiology for ID was detected in 51 of 74 (69%) families. Twelve candidate disease genes were identified. Contemporary ES followed by GS cost US$4976 (95% CI: $3704; $6969) per diagnosis and first-line GS at a cost of $7062 (95% CI: $6210; $8475) per diagnosis. CONCLUSION: Performing GS only in ID trios would be cost equivalent to ES if GS were available at $2435, about a 60% reduction from current prices. This study demonstrates that first-line GS achieves higher diagnostic rate than contemporary ES but at a higher cost.


Assuntos
Sequenciamento do Exoma , Exoma , Deficiência Intelectual , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico , Masculino , Feminino , Exoma/genética , Sequenciamento do Exoma/economia , Estudos de Coortes , Testes Genéticos/economia , Testes Genéticos/métodos , Sequenciamento Completo do Genoma/economia , Criança , Genoma Humano/genética , Variações do Número de Cópias de DNA/genética , Polimorfismo de Nucleotídeo Único/genética , Pré-Escolar
5.
Nat Med ; 29(1): 180-189, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36658419

RESUMO

Pregnancy loss and perinatal death are devastating events for families. We assessed 'genomic autopsy' as an adjunct to standard autopsy for 200 families who had experienced fetal or newborn death, providing a definitive or candidate genetic diagnosis in 105 families. Our cohort provides evidence of severe atypical in utero presentations of known genetic disorders and identifies novel phenotypes and disease genes. Inheritance of 42% of definitive diagnoses were either autosomal recessive (30.8%), X-linked recessive (3.8%) or autosomal dominant (excluding de novos, 7.7%), with risk of recurrence in future pregnancies. We report that at least ten families (5%) used their diagnosis for preimplantation (5) or prenatal diagnosis (5) of 12 pregnancies. We emphasize the clinical importance of genomic investigations of pregnancy loss and perinatal death, with short turnaround times for diagnostic reporting and followed by systematic research follow-up investigations. This approach has the potential to enable accurate counseling for future pregnancies.


Assuntos
Aborto Espontâneo , Morte Perinatal , Gravidez , Humanos , Feminino , Morte Perinatal/etiologia , Autopsia , Aborto Espontâneo/genética , Diagnóstico Pré-Natal , Genômica
6.
Prenat Diagn ; 43(2): 240-249, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36225116

RESUMO

Klinefelter syndrome (KS) or 47,XXY is the most common sex chromosome aneuploidy (SCA), occurring at a prevalence of 1 in 600 male pregnancies. Historically, only 25% of individuals with KS came to medical attention, for a range of issues across the life course including under-virilisation at birth, developmental and social concerns in childhood, absence, delay or arrest of puberty in adolescence or infertility in adulthood. Our understanding of the phenotypic spectrum of KS has been largely influenced by this ascertainment bias. With increasing uptake of antenatal noninvasive prenatal testing (NIPT), a corresponding increase in identification of KS has been documented. Population-based longitudinal data from infancy to adulthood on these individuals is lacking, which impedes balanced antenatal genetic counselling and raises issues for prospective parents and clinicians alike.


Assuntos
Síndrome de Klinefelter , Teste Pré-Natal não Invasivo , Adolescente , Recém-Nascido , Humanos , Masculino , Feminino , Gravidez , Síndrome de Klinefelter/diagnóstico , Síndrome de Klinefelter/epidemiologia , Síndrome de Klinefelter/genética , Estudos Prospectivos , Aberrações dos Cromossomos Sexuais , Parto
7.
Genet Med ; 24(11): 2351-2366, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36083290

RESUMO

PURPOSE: Germline loss-of-function variants in CTNNB1 cause neurodevelopmental disorder with spastic diplegia and visual defects (NEDSDV; OMIM 615075) and are the most frequent, recurrent monogenic cause of cerebral palsy (CP). We investigated the range of clinical phenotypes owing to disruptions of CTNNB1 to determine the association between NEDSDV and CP. METHODS: Genetic information from 404 individuals with collectively 392 pathogenic CTNNB1 variants were ascertained for the study. From these, detailed phenotypes for 52 previously unpublished individuals were collected and combined with 68 previously published individuals with comparable clinical information. The functional effects of selected CTNNB1 missense variants were assessed using TOPFlash assay. RESULTS: The phenotypes associated with pathogenic CTNNB1 variants were similar. A diagnosis of CP was not significantly associated with any set of traits that defined a specific phenotypic subgroup, indicating that CP is not additional to NEDSDV. Two CTNNB1 missense variants were dominant negative regulators of WNT signaling, highlighting the utility of the TOPFlash assay to functionally assess variants. CONCLUSION: NEDSDV is a clinically homogeneous disorder irrespective of initial clinical diagnoses, including CP, or entry points for genetic testing.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Fenótipo , Transtornos do Neurodesenvolvimento/genética , Via de Sinalização Wnt/genética , Deficiência Intelectual/genética , Genômica , beta Catenina/genética
8.
Hum Mutat ; 43(12): 1956-1969, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36030538

RESUMO

Tuberous sclerosis complex (TSC) is a multi-system genetic disorder. Most patients have germline mutations in TSC1 or TSC2 but, 10%-15% patients do not have TSC1/TSC2 mutations detected on routine clinical genetic testing. We investigated the contribution of low-level mosaic TSC1/TSC2 mutations in unsolved sporadic patients and families with TSC. Thirty-one sporadic TSC patients negative on routine testing and eight families with suspected parental mosaicism were sequenced using deep panel sequencing followed by droplet digital polymerase chain reaction. Pathogenic variants were found in 22/31 (71%) unsolved sporadic patients, 16 were mosaic (median variant allele fraction [VAF] 6.8% in blood) and 6 had missed germline mutations. Parental mosaicism was detected in 5/8 families (median VAF 1% in blood). Clinical testing laboratories typically only report pathogenic variants with allele fractions above 10%. Our findings highlight the critical need to change laboratory practice by implementing higher sensitivity assays to improve diagnostic yield, inform patient management and guide reproductive counseling.


Assuntos
Esclerose Tuberosa , Humanos , Esclerose Tuberosa/diagnóstico , Esclerose Tuberosa/genética , Esclerose Tuberosa/patologia , Proteína 2 do Complexo Esclerose Tuberosa/genética , Proteína 1 do Complexo Esclerose Tuberosa/genética , Proteínas Supressoras de Tumor/genética , Mosaicismo , Mutação
9.
J Med Genet ; 59(8): 748-758, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34740920

RESUMO

BACKGROUND: Clinical exome sequencing typically achieves diagnostic yields of 30%-57.5% in individuals with monogenic rare diseases. Undiagnosed diseases programmes implement strategies to improve diagnostic outcomes for these individuals. AIM: We share the lessons learnt from the first 3 years of the Undiagnosed Diseases Program-Victoria, an Australian programme embedded within a clinical genetics service in the state of Victoria with a focus on paediatric rare diseases. METHODS: We enrolled families who remained without a diagnosis after clinical genomic (panel, exome or genome) sequencing between 2016 and 2018. We used family-based exome sequencing (family ES), family-based genome sequencing (family GS), RNA sequencing (RNA-seq) and high-resolution chromosomal microarray (CMA) with research-based analysis. RESULTS: In 150 families, we achieved a diagnosis or strong candidate in 64 (42.7%) (37 in known genes with a consistent phenotype, 3 in known genes with a novel phenotype and 24 in novel disease genes). Fifty-four diagnoses or strong candidates were made by family ES, six by family GS with RNA-seq, two by high-resolution CMA and two by data reanalysis. CONCLUSION: We share our lessons learnt from the programme. Flexible implementation of multiple strategies allowed for scalability and response to the availability of new technologies. Broad implementation of family ES with research-based analysis showed promising yields post a negative clinical singleton ES. RNA-seq offered multiple benefits in family ES-negative populations. International data sharing strategies were critical in facilitating collaborations to establish novel disease-gene associations. Finally, the integrated approach of a multiskilled, multidisciplinary team was fundamental to having diverse perspectives and strategic decision-making.


Assuntos
Doenças não Diagnosticadas , Austrália , Exoma , Humanos , Doenças Raras/diagnóstico , Doenças Raras/epidemiologia , Doenças Raras/genética , Sequenciamento do Exoma
10.
Prenat Diagn ; 41(10): 1305-1315, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34297420

RESUMO

Three decades ago, the observation that first trimester fetuses with excess fluid accumulation at the back of the neck were more likely to be aneuploid, gave rise to a new era of prenatal screening. The nuchal translucency (NT) measurement in combination with serum biomarkers and maternal age, resulted in the first trimester combined screening (FTCS) program. The introduction of noninvasive prenatal testing (NIPT) over the past decade has introduced the option for parents to receive highly sensitive and specific screening information for common trisomy from as early as 10 weeks gestation, altering the traditional pathway FTCS pathway. The retention of the 11-13-week NT ultrasound remains important in the detection of structural anomalies; however, the optimal management of pregnancies with a low-risk NIPT result and an isolated increased NT measurement in an era of advanced genomic testing options is a new dilemma for clinicians. For parents, the prolonged period between the initial diagnosis in first trimester, and prognostic information at each successive stage of investigations up to 22-24 weeks, can be emotionally challenging. This article addresses the common questions from parents and clinicians as they navigate the uncertainty of having a fetus diagnosed with an increased NT after a low-risk NIPT result and presents suggested approaches to management.


Assuntos
Teste Pré-Natal não Invasivo/métodos , Medição da Translucência Nucal/enfermagem , Relações Enfermeiro-Paciente , Pais/psicologia , Adulto , Biomarcadores/análise , Biomarcadores/sangue , Feminino , Humanos , Teste Pré-Natal não Invasivo/normas , Medição da Translucência Nucal/estatística & dados numéricos , Gravidez , Estudos Prospectivos
11.
Am J Hum Genet ; 108(6): 1126-1137, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34010604

RESUMO

Dysregulated transforming growth factor TGF-ß signaling underlies the pathogenesis of genetic disorders affecting the connective tissue such as Loeys-Dietz syndrome. Here, we report 12 individuals with bi-allelic loss-of-function variants in IPO8 who presented with a syndromic association characterized by cardio-vascular anomalies, joint hyperlaxity, and various degree of dysmorphic features and developmental delay as well as immune dysregulation; the individuals were from nine unrelated families. Importin 8 belongs to the karyopherin family of nuclear transport receptors and was previously shown to mediate TGF-ß-dependent SMADs trafficking to the nucleus in vitro. The important in vivo role of IPO8 in pSMAD nuclear translocation was demonstrated by CRISPR/Cas9-mediated inactivation in zebrafish. Consistent with IPO8's role in BMP/TGF-ß signaling, ipo8-/- zebrafish presented mild to severe dorso-ventral patterning defects during early embryonic development. Moreover, ipo8-/- zebrafish displayed severe cardiovascular and skeletal defects that mirrored the human phenotype. Our work thus provides evidence that IPO8 plays a critical and non-redundant role in TGF-ß signaling during development and reinforces the existing link between TGF-ß signaling and connective tissue defects.


Assuntos
Doenças Ósseas/etiologia , Doenças Cardiovasculares/etiologia , Doenças do Tecido Conjuntivo/etiologia , Imunidade Celular/imunologia , Mutação com Perda de Função , Perda de Heterozigosidade , beta Carioferinas/genética , Adolescente , Adulto , Animais , Doenças Ósseas/patologia , Doenças Cardiovasculares/patologia , Criança , Doenças do Tecido Conjuntivo/patologia , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Transdução de Sinais , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Adulto Jovem , Peixe-Zebra , beta Carioferinas/metabolismo
12.
Brain Commun ; 3(1): fcaa221, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33604570

RESUMO

Polymicrogyria is a malformation of cortical development characterized by overfolding and abnormal lamination of the cerebral cortex. Manifestations include epilepsy, speech disturbance and motor and cognitive disability. Causes include acquired prenatal insults and inherited and de novo genetic variants. The proportion of patients with polymicrogyria and a causative germline or mosaic variant is not known. The aim of this study was to identify the monogenic causes of polymicrogyria in a heterogeneous cohort of patients reflective of specialized referral services. Patients with polymicrogyria were recruited from two clinical centres in Australia and Belgium. Patients with evidence of congenital cytomegalovirus infection or causative chromosomal copy number variants were excluded. One hundred and twenty-three patients were tested using deep sequencing gene panels including known and candidate genes for malformations of cortical development. Causative and potentially causative variants were identified and correlated with phenotypic features. Pathogenic or likely pathogenic variants were identified in 25/123 (20.3%) patients. A candidate variant was identified for an additional patient but could not be confirmed as de novo, and therefore it was classified as being of uncertain significance with high clinical relevance. Of the 22 dominant variants identified, 5 were mosaic with allele fractions less than 0.33 and the lowest allele fraction 0.09. The most common causative genes were TUBA1A and PIK3R2. The other eleven causative genes were PIK3CA, NEDD4L, COL4A1, COL4A2, GPSM2, GRIN2B, WDR62, TUBB3, TUBB2B, ACTG1 and FH. A genetic cause was more likely to be identified in the presence of an abnormal head size or additional brain malformations suggestive of a tubulinopathy, such as dysmorphic basal ganglia. A gene panel test provides greater sequencing depth and sensitivity for mosaic variants than whole exome or genome sequencing but is limited to the genes included, potentially missing variants in newly discovered genes. The diagnostic yield of 20.3% indicates that polymicrogyria may be associated with genes not yet known to be associated with brain malformations, brain-specific somatic mutations or non-genetic causes.

13.
Hum Mutat ; 42(5): 506-519, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33565183

RESUMO

This study shows a causal association between ALDH1A2 variants and a novel, severe multiple congenital anomaly syndrome in humans that is neonatally lethal due to associated pulmonary hypoplasia and respiratory failure. In two families, exome sequencing identified compound heterozygous missense variants in ALDH1A2. ALDH1A2 is involved in the conversion of retinol (vitamin A) into retinoic acid (RA), which is an essential regulator of diaphragm and cardiovascular formation during embryogenesis. Reduced RA causes cardiovascular, diaphragmatic, and associated pulmonary defects in several animal models, matching the phenotype observed in our patients. In silico protein modeling showed probable impairment of ALDH1A2 for three of the four substitutions. In vitro studies show a reduction of RA. Few pathogenic variants in genes encoding components of the retinoic signaling pathway have been described to date, likely due to embryonic lethality. Thus, this study contributes significantly to knowledge of the role of this pathway in human diaphragm and cardiovascular development and disease. Some clinical features in our patients are also observed in Fryns syndrome (MIM# 229850), syndromic microphthalmia 9 (MIM# 601186), and DiGeorge syndrome (MIM# 188400). Patients with similar clinical features who are genetically undiagnosed should be tested for recessive ALDH1A2-deficient malformation syndrome.


Assuntos
Anormalidades Múltiplas , Anormalidades Múltiplas/patologia , Família Aldeído Desidrogenase 1/genética , Animais , Doenças Cardiovasculares , Diafragma/metabolismo , Diafragma/patologia , Humanos , Pneumopatias , Retinal Desidrogenase/genética , Síndrome , Tretinoína/metabolismo
14.
Med ; 2(1): 49-73, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33575671

RESUMO

BACKGROUND: In about half of all patients with a suspected monogenic disease, genomic investigations fail to identify the diagnosis. A contributing factor is the difficulty with repetitive regions of the genome, such as those generated by segmental duplications. The ATAD3 locus is one such region, in which recessive deletions and dominant duplications have recently been reported to cause lethal perinatal mitochondrial diseases characterized by pontocerebellar hypoplasia or cardiomyopathy, respectively. METHODS: Whole exome, whole genome and long-read DNA sequencing techniques combined with studies of RNA and quantitative proteomics were used to investigate 17 subjects from 16 unrelated families with suspected mitochondrial disease. FINDINGS: We report six different de novo duplications in the ATAD3 gene locus causing a distinctive presentation including lethal perinatal cardiomyopathy, persistent hyperlactacidemia, and frequently corneal clouding or cataracts and encephalopathy. The recurrent 68 Kb ATAD3 duplications are identifiable from genome and exome sequencing but usually missed by microarrays. The ATAD3 duplications result in the formation of identical chimeric ATAD3A/ATAD3C proteins, altered ATAD3 complexes and a striking reduction in mitochondrial oxidative phosphorylation complex I and its activity in heart tissue. CONCLUSIONS: ATAD3 duplications appear to act in a dominant-negative manner and the de novo inheritance infers a low recurrence risk for families, unlike most pediatric mitochondrial diseases. More than 350 genes underlie mitochondrial diseases. In our experience the ATAD3 locus is now one of the five most common causes of nuclear-encoded pediatric mitochondrial disease but the repetitive nature of the locus means ATAD3 diagnoses may be frequently missed by current genomic strategies. FUNDING: Australian NHMRC, US Department of Defense, Japanese AMED and JSPS agencies, Australian Genomics Health Alliance and Australian Mito Foundation.


Assuntos
Cardiomiopatias , Insuficiência Cardíaca , Doenças Mitocondriais , ATPases Associadas a Diversas Atividades Celulares/genética , Austrália , Criança , Humanos , Proteínas de Membrana/genética , Doenças Mitocondriais/genética , Proteínas Mitocondriais/genética , Estados Unidos
15.
JCO Precis Oncol ; 5: 1001-1012, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34994626

RESUMO

Noninvasive prenatal testing (NIPT) is a screening test for fetal chromosomal aneuploidy using cell-free DNA derived from maternal blood. It has been rapidly accepted into obstetric practice because of its application from 10-weeks' gestation, and its high sensitivity and specificity. NIPT results can be influenced by several factors including placental or maternal mosaicism and co-twin demise; cell-free DNA from a maternal origin can also complicate interpretation, with evidence that NIPT can detect previously unsuspected malignancies. This study aimed to develop management guidelines for women with NIPT results suspicious of maternal malignancy. The Peter MacCallum Cancer Center's experience of seven cases where abnormal NIPT results led to investigation for maternal malignancy between 2016 and 2019 were reviewed, along with the published literature. Six of the seven women (86%) referred for investigation were diagnosed with advanced malignancies, including colorectal cancer, breast cancer, melanoma, and Hodgkin lymphoma. Based on our single-center experience, as well as the available literature, guidelines for the investigation of women with NIPT results suspicious of malignancy are proposed, including utilization of fluorodeoxyglucose positron emission tomography-computed tomography, which had a high concordance with other investigations and diagnoses. These guidelines include maternal and fetal investigations, as well as consideration of the complex medical, psychologic, social, and ethical needs of these patients and their families.


Assuntos
Teste Pré-Natal não Invasivo , Complicações Neoplásicas na Gravidez/diagnóstico , Adulto , Feminino , Humanos , Guias de Prática Clínica como Assunto , Gravidez , Complicações Neoplásicas na Gravidez/terapia
16.
J Med Genet ; 58(9): 609-618, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33060286

RESUMO

BACKGROUND: Fetal akinesia and arthrogryposis are clinically and genetically heterogeneous and have traditionally been refractive to genetic diagnosis. The widespread availability of affordable genome-wide sequencing has facilitated accurate genetic diagnosis and gene discovery in these conditions. METHODS: We performed next generation sequencing (NGS) in 190 probands with a diagnosis of arthrogryposis multiplex congenita, distal arthrogryposis, fetal akinesia deformation sequence or multiple pterygium syndrome. This sequencing was a combination of bespoke neurogenetic disease gene panels and whole exome sequencing. Only class 4 and 5 variants were reported, except for two cases where the identified variants of unknown significance (VUS) are most likely to be causative for the observed phenotype. Co-segregation studies and confirmation of variants identified by NGS were performed where possible. Functional genomics was performed as required. RESULTS: Of the 190 probands, 81 received an accurate genetic diagnosis. All except two of these cases harboured class 4 and/or 5 variants based on the American College of Medical Genetics and Genomics guidelines. We identified phenotypic expansions associated with CACNA1S, CHRNB1, GMPPB and STAC3. We describe a total of 50 novel variants, including a novel missense variant in the recently identified gene for arthrogryposis with brain malformations-SMPD4. CONCLUSIONS: Comprehensive gene panels give a diagnosis for a substantial proportion (42%) of fetal akinesia and arthrogryposis cases, even in an unselected cohort. Recently identified genes account for a relatively large proportion, 32%, of the diagnoses. Diagnostic-research collaboration was critical to the diagnosis and variant interpretation in many cases, facilitated genotype-phenotype expansions and reclassified VUS through functional genomics.


Assuntos
Artrogripose/diagnóstico , Artrogripose/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Genômica , Fenótipo , Alelos , Sequência de Aminoácidos , Substituição de Aminoácidos , Mapeamento Cromossômico , Feminino , Genômica/métodos , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imageamento por Ressonância Magnética , Masculino , Mutação , Linhagem , Análise de Sequência de DNA , Sequenciamento do Exoma
17.
Mol Genet Genomic Med ; 8(11): e1508, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32969205

RESUMO

BACKGROUND: Our primary aim was to evaluate the systematic reanalysis of singleton exome sequencing (ES) data for unsolved cases referred for any indication. A secondary objective was to undertake a literature review of studies examining the reanalysis of genomic data from unsolved cases. METHODS: We examined data from 58 unsolved cases referred between June 2016 and March 2017. First reanalysis at 4-13 months after the initial report considered genes newly associated with disease since the original analysis; second reanalysis at 9-18 months considered all disease-associated genes. At 25-34 months we reviewed all cases and the strategies which solved them. RESULTS: Reanalysis of existing ES data alone at two timepoints did not yield new diagnoses. Over the same timeframe, 10 new diagnoses were obtained (17%) from additional strategies, such as microarray detection of copy number variation, repeat sequencing to improve coverage, and trio sequencing. Twenty-seven peer-reviewed articles were identified on the literature review, with a median new diagnosis rate via reanalysis of 15% and median reanalysis timeframe of 22 months. CONCLUSION: Our findings suggest that an interval of greater than 18 months from the original report may be optimal for reanalysis. We also recommend a multi-faceted strategy for cases remaining unsolved after singleton ES.


Assuntos
Sequenciamento do Exoma/normas , Testes Genéticos/normas , Doenças Raras/genética , Análise de Sequência de DNA/normas , Testes Genéticos/métodos , Humanos , Doenças Raras/diagnóstico , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Análise de Sequência de DNA/métodos , Sequenciamento do Exoma/métodos
18.
Genet Med ; 22(12): 1986-1993, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32773771

RESUMO

PURPOSE: Cost-effectiveness evaluations of first-line genomic sequencing (GS) in the diagnosis of children with genetic conditions are limited by the lack of well-defined comparative cohorts. We sought to evaluate the cost-effectiveness of early GS in pediatric patients with complex monogenic conditions compared with a matched historical cohort. METHODS: Data, including investigation costs, were collected in a prospective cohort of 92 pediatric patients undergoing singleton GS over an 18-month period (2016-2017) with two of the following: a condition with high mortality, multisystem disease involving three or more organs, or severe limitation of daily function. Comparative data were collected in a matched historical cohort who underwent traditional investigations in the years 2012-2013. RESULTS: GS yielded a diagnosis in 42% while traditional investigations yielded a diagnosis in 23% (p = 0.003). A change in management was experienced by 74% of patients diagnosed following GS, compared with 32% diagnosed following traditional investigations. Singleton GS at a cost of AU$3100 resulted in a mean saving per person of AU$3602 (95% confidence interval [CI] AU$2520-4685). Cost savings occurred across all investigation subtypes and were only minimally offset by clinical management costs. CONCLUSION: GS in complex pediatric patients saves significant costs and doubles the diagnostic yield of traditional approaches.


Assuntos
Exoma , Genômica , Criança , Mapeamento Cromossômico , Análise Custo-Benefício , Humanos , Estudos Prospectivos
19.
Mol Genet Genomic Med ; 8(6): e1173, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32304187

RESUMO

BACKGROUND: Greenberg dysplasia is a rare, autosomal recessive, prenatal lethal bone dysplasia caused by biallelic pathogenic variants in the lamin B receptor (LBR) gene. Pathogenic variants in LBR are also associated with Pelger-Huët anomaly, an autosomal dominant benign abnormality of the nuclear shape and chromatin organization of blood granulocytes, and Pelger-Huët anomaly with variable skeletal anomalies, a mild, regressing to moderate-severe autosomal recessive condition. Conditions with abnormal sterol metabolism and different genetic basis have clinical and radiographic features similar to Greenberg dysplasia, for example X-linked dominant chondrodysplasia punctata, Conradi-Hünermann type, and CHILD syndrome, and other conditions with unknown genetic etiology display very similar features, for example, dappled diaphyseal dysplasia and Astley-Kendall dysplasia. METHODS: We present a fetus with typical clinical and radiographic features of Greenberg dysplasia, and review the literature. RESULTS: Genetic testing confirmed the diagnosis Greenberg dysplasia: homozygosity for a pathogenic variant in LBR. CONCLUSION: Comparing the clinical and radiographic phenotypes of Greenberg dysplasia, dappled diaphyseal dysplasia, and Astley-Kendall dysplasia, we suggest that these are allelic disorders.


Assuntos
Condrodisplasia Punctata/genética , Nanismo/genética , Osteocondrodisplasias/genética , Osteogênese Imperfeita/genética , Fenótipo , Receptores Citoplasmáticos e Nucleares/genética , Adulto , Alelos , Condrodisplasia Punctata/diagnóstico por imagem , Condrodisplasia Punctata/patologia , Nanismo/diagnóstico por imagem , Nanismo/patologia , Feminino , Feto/patologia , Homozigoto , Humanos , Osteocondrodisplasias/diagnóstico por imagem , Osteocondrodisplasias/patologia , Osteogênese Imperfeita/diagnóstico por imagem , Osteogênese Imperfeita/patologia , Gravidez , Receptor de Lamina B
20.
Eur J Med Genet ; 63(4): 103774, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31585183

RESUMO

We present the case of a male infant with bilateral perisylvian polymicrogyria associated with a de novo duplication of chromosome region 17p13.3p13.2. To our knowledge, this is the first report of polymicrogyria associated with the 17p13.3 contiguous gene duplication syndrome. Testing for known monogenic causes of polymicrogyria was negative and there was no clinical evidence of an acquired prenatal cause. Given the critical, dose-sensitive role that the 17p13.3 region plays in brain development, we suggest that the chromosome duplication is the most likely explanation for the polymicrogyria. Clinical and functional studies have demonstrated deleterious effects of increased LIS1 expression on the developing brain and the contribution of YWHAE to the brain phenotype of the 17p13 duplication syndrome. There is also evidence that CRK, the other candidate gene in this region, via interaction with LIS1, plays a critical role in cortical development. In addition to LIS1, YWHAE and CRK, our patient's chromosome duplication involves at least 100 other genes, less than half of which are annotated at the time of writing. It is expected that the ongoing use of chromosome microarray and next-generation sequencing to investigate the genetic causes of brain malformations will continue to extend our understanding of the 17p13 region and of the contributions of the genes in this region to cortical development.


Assuntos
Duplicação Cromossômica , Cromossomos Humanos Par 17/genética , Polimicrogiria/genética , Polimicrogiria/patologia , Humanos , Lactente , Masculino , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...