Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Sci ; 188(1): 17-33, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35485993

RESUMO

Current animal-free methods to assess teratogenicity of drugs under development still deliver high numbers of false negatives. To improve the sensitivity of human teratogenicity prediction, we characterized the TeraTox test, a newly developed multilineage differentiation assay using 3D human-induced pluripotent stem cells. TeraTox produces primary output concentration-dependent cytotoxicity and altered gene expression induced by each test compound. These data are fed into an interpretable machine-learning model to perform prediction, which relates to the concentration-dependent human teratogenicity potential of drug candidates. We applied TeraTox to profile 33 approved pharmaceuticals and 12 proprietary drug candidates with known in vivo data. Comparing TeraTox predictions with known human or animal toxicity, we report an accuracy of 69% (specificity: 53%, sensitivity: 79%). TeraTox performed better than 2 quantitative structure-activity relationship models and had a higher sensitivity than the murine embryonic stem cell test (accuracy: 58%, specificity: 76%, and sensitivity: 46%) run in the same laboratory. The overall prediction accuracy could be further improved by combining TeraTox and mouse embryonic stem cell test results. Furthermore, patterns of altered gene expression revealed by TeraTox may help grouping toxicologically similar compounds and possibly deducing common modes of action. The TeraTox assay and the dataset described here therefore represent a new tool and a valuable resource for drug teratogenicity assessment.


Assuntos
Células-Tronco Pluripotentes Induzidas , Teratogênese , Animais , Bioensaio/métodos , Diferenciação Celular , Células-Tronco Embrionárias/metabolismo , Camundongos
2.
PLoS One ; 12(11): e0187574, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29107969

RESUMO

Single-stranded oligonucleotides (ON) comprise a promising therapeutic platform that enables selective modulation of currently undruggable targets. The development of novel ON drug candidates has demonstrated excellent efficacy, but in certain cases also some safety liabilities were reported. Among them are events of thrombocytopenia, which have recently been evident in late stage trials with ON drugs. The underlying mechanisms are poorly understood and the risk for ON candidates causing such events cannot be sufficiently assessed pre-clinically. We investigated potential thrombocytopenia risk factors of ONs and implemented a set of in vitro assays to assess these risks. Our findings support previous observations that phosphorothioate (PS)-ONs can bind to platelet proteins such as platelet collagen receptor glycoprotein VI (GPVI) and activate human platelets in vitro to various extents. We also show that these PS-ONs can bind to platelet factor 4 (PF4). Binding to platelet proteins and subsequent activation correlates with ON length and connected to this, the number of PS in the backbone of the molecule. Moreover, we demonstrate that locked nucleic acid (LNA) ribosyl modifications in the wings of the PS-ONs strongly suppress binding to GPVI and PF4, paralleled by markedly reduced platelet activation. In addition, we provide evidence that PS-ONs do not directly affect hematopoietic cell differentiation in culture but at higher concentrations show a pro-inflammatory potential, which might contribute to platelet activation. Overall, our data confirm that certain molecular attributes of ONs are associated with a higher risk for thrombocytopenia. We propose that applying the in vitro assays discussed here during the lead optimization phase may aid in deprioritizing ONs with a potential to induce thrombocytopenia.


Assuntos
Oligonucleotídeos/efeitos adversos , Trombocitopenia/induzido quimicamente , Medula Óssea/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Oligonucleotídeos/química , Oligonucleotídeos/metabolismo , Ativação Plaquetária/efeitos dos fármacos , Glicoproteínas da Membrana de Plaquetas/metabolismo , Ligação Proteica , Fatores de Risco , Ressonância de Plasmônio de Superfície
3.
AAPS J ; 19(2): 534-550, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28050713

RESUMO

Early prediction of human clearance is often challenging, in particular for the growing number of low-clearance compounds. Long-term in vitro models have been developed which enable sophisticated hepatic drug disposition studies and improved clearance predictions. Here, the cell line HepG2, iPSC-derived hepatocytes (iCell®), the hepatic stem cell line HepaRG™, and human hepatocyte co-cultures (HµREL™ and HepatoPac®) were compared to primary hepatocyte suspension cultures with respect to their key metabolic activities. Similar metabolic activities were found for the long-term models HepaRG™, HµREL™, and HepatoPac® and the short-term suspension cultures when averaged across all 11 enzyme markers, although differences were seen in the activities of CYP2D6 and non-CYP enzymes. For iCell® and HepG2, the metabolic activity was more than tenfold lower. The micropatterned HepatoPac® model was further evaluated with respect to clearance prediction. To assess the in vitro parameters, pharmacokinetic modeling was applied. The determination of intrinsic clearance by nonlinear mixed-effects modeling in a long-term model significantly increased the confidence in the parameter estimation and extended the sensitive range towards 3% of liver blood flow, i.e., >10-fold lower as compared to suspension cultures. For in vitro to in vivo extrapolation, the well-stirred model was used. The micropatterned model gave rise to clearance prediction in man within a twofold error for the majority of low-clearance compounds. Further research is needed to understand whether transporter activity and drug metabolism by non-CYP enzymes, such as UGTs, SULTs, AO, and FMO, is comparable to the in vivo situation in these long-term culture models.


Assuntos
Hepatócitos/metabolismo , Fígado/metabolismo , Modelos Biológicos , Farmacocinética , Técnicas de Cocultura , Citocromo P-450 CYP2D6/metabolismo , Enzimas/metabolismo , Células Hep G2 , Hepatócitos/enzimologia , Humanos , Fígado/enzimologia , Dinâmica não Linear , Preparações Farmacêuticas/metabolismo , Fatores de Tempo
4.
Toxicol Sci ; 156(1): 133-148, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28069987

RESUMO

Organ toxicity, particularly liver toxicity, remains one of the major reasons for the termination of drug candidates in the development pipeline as well as withdrawal or restrictions of marketed drugs. A screening-amenable alternative in vivo model such as zebrafish would, therefore, find immediate application in the early prediction of unacceptable organ toxicity. To identify highly upregulated genes as biomarkers of toxic responses in the zebrafish model, a set of well-characterized reference drugs that cause drug-induced liver injury (DILI) in the clinic were applied to zebrafish larvae and adults. Transcriptome microarray analysis was performed on whole larvae or dissected adult livers. Integration of data sets from different drug treatments at different stages identified common upregulated detoxification pathways. Within these were candidate biomarkers which recurred in multiple treatments. We prioritized 4 highly upregulated genes encoding enzymes acting in distinct phases of the drug metabolism pathway. Through promoter isolation and fosmid recombineering, eGFP reporter transgenic zebrafish lines were generated and evaluated for their response to DILI drugs. Three of the 4 generated reporter lines showed a dose and time-dependent induction in endodermal organs to reference drugs and an expanded drug set. In conclusion, through integrated transcriptomics and transgenic approaches, we have developed parallel independent zebrafish in vivo screening platforms able to predict organ toxicities of preclinical drugs.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Drogas em Investigação/efeitos adversos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Genes Reporter/efeitos dos fármacos , Fígado/efeitos dos fármacos , Testes de Toxicidade/métodos , Xenobióticos/toxicidade , Animais , Animais Geneticamente Modificados , Biomarcadores/metabolismo , Relação Dose-Resposta a Droga , Drogas em Investigação/administração & dosagem , Endoderma/efeitos dos fármacos , Endoderma/crescimento & desenvolvimento , Endoderma/metabolismo , Feminino , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Perfilação da Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Larva/efeitos dos fármacos , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Masculino , Organogênese/efeitos dos fármacos , Proteínas Recombinantes/metabolismo , Teratogênicos/toxicidade , Xenobióticos/administração & dosagem , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo
5.
Arch Toxicol ; 91(3): 1187-1197, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27485346

RESUMO

Understanding and predicting whether new drug candidates will be safe in the clinic is a critical hurdle in pharmaceutical development, that relies in part on absorption, distribution, metabolism, excretion and toxicology studies in vivo. Zebrafish is a relatively new model system for drug metabolism and toxicity studies, offering whole organism screening coupled with small size and potential for high-throughput screening. Through toxicity and absorption analyses of a number of drugs, we find that zebrafish is generally predictive of drug toxicity, although assay outcomes are influenced by drug lipophilicity which alters drug uptake. In addition, liver microsome assays reveal specific differences in metabolism of compounds between human and zebrafish livers, likely resulting from the divergence of the cytochrome P450 superfamily between species. To reflect human metabolism more accurately, we generated a transgenic "humanized" zebrafish line that expresses the major human phase I detoxifying enzyme, CYP3A4, in the liver. Here, we show that this humanized line shows an elevated metabolism of CYP3A4-specific substrates compared to wild-type zebrafish. The generation of this first described humanized zebrafish liver suggests such approaches can enhance the accuracy of the zebrafish model for toxicity prediction.


Assuntos
Citocromo P-450 CYP3A/genética , Fígado/efeitos dos fármacos , Farmacocinética , Testes de Toxicidade/métodos , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Cromatografia Líquida de Alta Pressão , Citocromo P-450 CYP3A/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Inativação Metabólica , Fígado/metabolismo , Espectrometria de Massas , Preparações Farmacêuticas/química , Solubilidade
7.
Toxicol Sci ; 118(1): 71-85, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20631060

RESUMO

This article describes the first step toward full (that includes conditions for both absence and presence of metabolic activation) validation and drug discovery application of a 96-well, automated, high-content micronucleus (HCMN) assay. The current validation tests were performed using Chinese hamster ovary cells, in the absence of metabolic activation, against three distinct sets of drug-like compounds that represent all stages of a drug discovery pipeline. A compound categorization scheme was created based on quantitative relationships between micronucleus (MN) signals, cytotoxicity, and compound solubility. Results from initial validation compounds (n = 38) set the stage for differentiating overall positive and negative MN inducers. To delve deeper into the compound categorization process, a more extensive validation set, consisting of a larger set (n = 370) of "drug-like but less optimized" early-stage compounds, was used for further refinement of positive and negative compound categories. The predictivity and applicability of the assay for clinical stage compounds was ascertained using (n = 168) clinically developed marketed drugs or well-studied compounds. Upon full validation, a detailed analysis of results established five compound categories--NEG (negative), NEG/xx µM (negative up to the solubility limit of xx µM), WPOS (weak positive), POS (positive), and INCON (inconclusive). Furthermore, examples of lead-finding applications and ongoing investigative HCMN activities are described. A proposal is offered on how the HCMN assay can be positioned in parallel to the overall stage gates (e.g., scaffold selection, lead optimization, late-stage preclinical development) of drug discovery programs. Because of its greater throughput, 1-week turnaround time, and a substantially reduced (1-2 mg) requirement for compound consumption, the HCMN assay is appropriate for developing structure-genotoxicity relationships and for mechanistic genotoxicity studies. The assay does not replace the Organization for Economic Cooperation and Development-compliant, non-good laboratory practice in vitro MN test (e.g., slide-based MN test in TK6 lymphoblastoid cells) that is used for full characterization of lead candidates.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Indústria Farmacêutica/métodos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Perfilação da Expressão Gênica , Animais , Células CHO , Cricetinae , Cricetulus , Expressão Gênica , Testes para Micronúcleos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...