Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Immunol Res ; 10(11): 1309-1325, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36040846

RESUMO

Establishing commensal dysbiosis, defined as an inflammatory gut microbiome with low biodiversity, before breast tumor initiation, enhances early dissemination of hormone receptor-positive (HR+) mammary tumor cells. Here, we sought to determine whether cellular changes occurring in normal mammary tissues, before tumor initiation and in response to dysbiosis, enhanced dissemination of HR+ tumors. Commensal dysbiosis increased both the frequency and profibrogenicity of mast cells in normal, non-tumor-bearing mammary tissues, a phenotypic change that persisted after tumor implantation. Pharmacological and adoptive transfer approaches demonstrated that profibrogenic mammary tissue mast cells from dysbiotic animals were sufficient to enhance dissemination of HR+ tumor cells. Using archival HR+ patient samples, we determined that enhanced collagen levels in tumor-adjacent mammary tissue positively correlated with mast cell abundance and HR+ breast cancer recurrence. Together, these data demonstrate that mast cells programmed by commensal dysbiosis activate mammary tissue fibroblasts and orchestrate early dissemination of HR+ breast tumors.


Assuntos
Microbioma Gastrointestinal , Neoplasias Mamárias Animais , Animais , Disbiose , Mastócitos/patologia , Recidiva Local de Neoplasia , Transformação Celular Neoplásica
2.
Immunity ; 51(3): 465-478.e6, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31422869

RESUMO

The generation of high-affinity neutralizing antibodies, the objective of most vaccine strategies, occurs in B cells within germinal centers (GCs) and requires rate-limiting "help" from follicular helper CD4+ T (Tfh) cells. Although Tfh differentiation is an attribute of MHC II-restricted CD4+ T cells, the transcription factors driving Tfh differentiation, notably Bcl6, are not restricted to CD4+ T cells. Here, we identified a requirement for the CD4+-specific transcription factor Thpok during Tfh cell differentiation, GC formation, and antibody maturation. Thpok promoted Bcl6 expression and bound to a Thpok-responsive region in the first intron of Bcl6. Thpok also promoted the expression of Bcl6-independent genes, including the transcription factor Maf, which cooperated with Bcl6 to mediate the effect of Thpok on Tfh cell differentiation. Our findings identify a transcriptional program that links the CD4+ lineage with Tfh differentiation, a limiting factor for efficient B cell responses, and suggest avenues to optimize vaccine generation.


Assuntos
Diferenciação Celular/imunologia , Proteínas Proto-Oncogênicas c-bcl-6/imunologia , Proteínas Proto-Oncogênicas c-maf/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Fatores de Transcrição/imunologia , Transcrição Gênica/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Feminino , Regulação da Expressão Gênica/imunologia , Centro Germinativo/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...