Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 147: 622-630, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28926816

RESUMO

Landfill leachate treatment is an ongoing challenge in the wastewater management of existing sanitary landfill sites due to the complex nature of leachates and their heavy pollutant load. There is a continuous interest in treatment biotechnologies with expected added benefits for resource recovery; microalgal bioremediation is seen as promising in this regard. Toxicity reduction of landfill leachate subsequent to phycoremediation was investigated in this study. The treatment eventuated from the growth of the ammonia tolerant microalgal strain Chlamydomonas sp. SW15aRL using a N:P ratio adjustment in diluted leachate for facilitating the process. Toxicity tests ranging over a number of trophic levels were applied, including bacterial-yeast (MARA), protistean (microalgae growth inhibition test), crustacean (daphnia, rotifer) and higher plant (monocot, dicot) assays. Ammonia nitrogen in the diluted landfill leachate containing up to 158mgl-1 NH4+-N (60% dilution of the original) was reduced by 83% during the microalgal treatment. Testing prior to remediation indicated the highest toxicity in the crustacean assays Daphnia magna and Brachionus calyciflorus with EC50s at 24h of ~ 35% and 40% leachate dilution, respectively. A major reduction in toxicity was achieved with both bioassays post microalgal treatment with effects well below the EC20s. The microalgae inhibition test on the other hand indicated increased stimulation of growth after treatment as a result of toxicity reduction but also the presence of residual nutrients. Several concurrent processes of both biotic and abiotic natures contributed to pollutant reduction during the treatment. Modifying phosphate dosage especially seems to require further attention. As a by-product of the remediation process, up to 1.2gl-1 of microalgal biomass was obtained with ~ 18% DW lipid content.


Assuntos
Chlamydomonas/metabolismo , Microalgas/metabolismo , Águas Residuárias/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Animais , Biodegradação Ambiental , Chlamydomonas/crescimento & desenvolvimento , Daphnia/efeitos dos fármacos , Monitoramento Ambiental , Irlanda , Microalgas/crescimento & desenvolvimento , Rotíferos/efeitos dos fármacos , Testes de Toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA