Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Horm Behav ; 155: 105408, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37541099

RESUMO

Protein interacting with C kinase 1 (PICK1) is an AMPA receptor binding protein that works in conjunction with glutamate receptor interacting protein (GRIP) to balance the number of GluA2-containing AMPARs in the synapse. In male mice, disrupting PICK1 in the medial prefrontal cortex (mPFC) leads to a decrease in cue-induced cocaine seeking and disrupting GRIP in the mPFC has the opposing effect, consistent with other evidence that removal of GluA2-containing AMPARs potentiates reinstatement. However, PICK1 does not seem to play the same role in female mice, as knockdown of either PICK1 or GRIP in the mPFC leads to similar increases in cue-induced cocaine seeking. These previous findings indicate that the role of PICK1 in the prefrontal cortex is sex specific. The goal of the current study was to examine whether ovarian hormones contribute to the effect of prefrontal PICK1 knockdown on reinstatement of cocaine seeking. While we replicated the increased cue-induced cocaine seeking in prefrontal PICK1 knockdown sham mice, we did not see any difference between the GFP control mice and PICK1 knockdowns following ovariectomy. However, this effect was driven primarily by an increase in cocaine seeking in ovariectomized GFP control mice while there was no effect ovariectomy in PICK1 knockdown mice. Taken together, these findings suggest that circulating ovarian hormones interact with the effects of PICK1 on cue-induced reinstatement.


Assuntos
Cocaína , Camundongos , Animais , Masculino , Feminino , Cocaína/farmacologia , Núcleo Accumbens/metabolismo , Sinapses , Córtex Pré-Frontal , Hormônios/metabolismo , Autoadministração , Extinção Psicológica
2.
iScience ; 26(3): 106156, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36852281

RESUMO

Promoting myelination capacity of endogenous oligodendrocyte precursor cells (OPCs) is a promising therapeutic approach for CNS demyelinating disorders such as Multiple Sclerosis (MS). To aid in the discovery of myelination-promoting compounds, we generated a genome-engineered human pluripotent stem cell (hPSC) line that consists of three reporters: identification-and-purification tag, GFP, and secreted-NanoLuc, driven by the endogenous PDGFRA, PLP1, and MBP genes, respectively. Using this cell line, we established a high-throughput drug screening platform and performed a small-molecule screen, which identified at least two myelination-promoting small-molecule (Ro1138452 and SR2211) that target prostacyclin (IP) receptor and retinoic acid receptor-related orphan receptor γ (RORγ), respectively. Single-cell-transcriptomic analysis of differentiating OPCs treated with these molecules further confirmed that they promote oligodendrocyte differentiation and revealed several pathways that are potentially modulated by them. The molecules and their target pathways provide promising targets for the possible development of remyelination-based therapy for MS and other demyelinating disorders.

3.
Biol Sex Differ ; 13(1): 66, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36348414

RESUMO

BACKGROUND: Dysregulation in the prefrontal cortex underlies a variety of psychiatric illnesses, including substance use disorder, depression, and anxiety. Despite the established sex differences in prevalence and presentation of these illnesses, the neural mechanisms driving these differences are largely unexplored. Here, we investigate potential sex differences in glutamatergic transmission within the medial prefrontal cortex (mPFC). The goal of these experiments was to determine if there are baseline sex differences in transmission within this region that may underlie sex differences in diseases that involve dysregulation in the prefrontal cortex. METHODS: Adult male and female C57Bl/6J mice were used for all experiments. Mice were killed and bilateral tissue samples were taken from the medial prefrontal cortex for western blotting. Both synaptosomal and total GluA1 and GluA2 levels were measured. In a second set of experiments, mice were killed and ex vivo slice electrophysiology was performed on prepared tissue from the medial prefrontal cortex. Spontaneous excitatory postsynaptic currents and rectification indices were measured. RESULTS: Females exhibit higher levels of synaptosomal GluA1 and GluA2 in the mPFC compared to males. Despite similar trends, no statistically significant differences are seen in total levels of GluA1 and GluA2. Females also exhibit both a higher amplitude and higher frequency of spontaneous excitatory postsynaptic currents and greater inward rectification in the mPFC compared to males. CONCLUSIONS: Overall, we conclude that there are sex differences in glutamatergic transmission in the mPFC. Our data suggest that females have higher levels of glutamatergic transmission in this region. This provides evidence that the development of sex-specific pharmacotherapies for various psychiatric diseases is important to create more effective treatments.


Assuntos
Ácido Glutâmico , Caracteres Sexuais , Feminino , Masculino , Camundongos , Animais , Córtex Pré-Frontal/fisiologia , Potenciais Pós-Sinápticos Excitadores , Camundongos Endogâmicos C57BL
4.
Brain Res ; 1777: 147755, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34932973

RESUMO

Post-weaning social isolation stress has been shown to increase addiction-like behavior in adulthood. These long-term behavioral alterations may be due to long lasting isolation-induced structural changes to neurons in brain regions involved in reward processing. Previous studies have shown that various stressors alter dendritic spine density in the prefrontal cortex (PFC) and the nucleus accumbens, though many of these studies examine the short-term effects of stress, and are primarily conducted in males. There is mounting evidence that males and females exhibit differences in their stress responses, with some studies showing sex differences in stress-induced plasticity. To determine the long-lasting, sex-specific alterations in spine density following post-weaning social isolation, male and female mice were either isolated or group housed at weaning and spine density was measured once they reached adulthood. Post-weaning isolation increased spine density in the PFC of both the males and females, although the effects in the infralimbic cortex were more pronounced in the females. In the nucleus accumbens, adolescent isolation increased spine density in males only in the core and shell. Females also had higher baseline spine density than males in the nucleus accumbens core. Together these data suggest that adolescent social isolation causes long-term, sex-specific alterations to the prefrontal cortex and the nucleus accumbens.


Assuntos
Espinhas Dendríticas/fisiologia , Núcleo Accumbens/fisiologia , Córtex Pré-Frontal/fisiologia , Isolamento Social , Estresse Psicológico , Desmame , Animais , Animais Recém-Nascidos , Encéfalo/fisiologia , Córtex Cerebral/fisiologia , Feminino , Hipocampo/fisiologia , Masculino , Camundongos , Neurônios , Recompensa , Caracteres Sexuais
5.
Addict Biol ; 26(5): e13051, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34110073

RESUMO

Disruption of prefrontal glutamate receptor interacting protein (GRIP), which anchors GluA2-containing AMPA receptors (AMPARs) into the synaptic membrane, potentiates cue-induced cocaine seeking in both males and females. Protein interacting with C kinase 1 (PICK1) plays an opposing role to that of GRIP, removing AMPARs from the synapse. Consistent with our hypothesis that disruption of PICK1 in the mPFC would lead to a decrease in addiction-like behaviour, we found that conditional deletion of PICK1 in the mPFC attenuates cue-induced cocaine seeking in male mice. However, prefrontal PICK1 deletion had the opposite effect in females, leading to an increase in cue-induced reinstatement of cocaine seeking. We did not see any effects of PICK1 knockdown on sucrose taking or seeking, suggesting the sex-specific effects do not generalise to natural reinforcers. These findings suggest the role of PICK1 in the prefrontal cortex of females may not be consistent with its accepted role in males. To determine whether these sex differences were influenced by gonadal hormones, we gonadectomised a cohort of males and found that removal of circulating androgens eliminated the effect of prefrontal PICK1 knockdown. As there was no effect of gonadectomy on its own on any of the behavioural measures collected, our results suggest that androgens may be involved in compensatory downstream effects of PICK1 knockdown. Taken together, these results highlight the need for consideration of sex as a biological variable when examining mechanisms underlying all behaviours, as convergent sex differences can reveal different mechanisms where behavioural sex differences do not exist.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cocaína/farmacologia , Comportamento de Procura de Droga/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Animais , Transtornos Relacionados ao Uso de Cocaína , Condicionamento Operante , Feminino , Ácido Glutâmico/metabolismo , Masculino , Camundongos , Núcleo Accumbens/efeitos dos fármacos , Receptores de AMPA/metabolismo , Autoadministração , Caracteres Sexuais , Sacarose/administração & dosagem , Sinapses/metabolismo
6.
Neurosci Biobehav Rev ; 107: 360-369, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31550452

RESUMO

Stress is an important risk factor for the development of substance use disorder (SUD). Exposure to both stress and drugs abuse lead to changes in synaptic plasticity and stress-induced alterations in synaptic plasticity may contribute to later vulnerability to SUD. Recent developmental neuroscience studies have identified microglia as regulators of synaptic plasticity. As both stress and drugs of abuse lead to microglial activation, we propose this as a potential mechanism underlying their ability to change synaptic plasticity. This review focuses on three components of synaptic plasticity: spine density, brain-derived neurotrophic factor (BDNF) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor expression. Their roles in addiction, stress, and development will be reviewed, as well as possible mechanisms by which microglia could regulate their function. Potential links between stress, vulnerability to addiction, and microglial activity will be explored.


Assuntos
Microglia/metabolismo , Plasticidade Neuronal/fisiologia , Núcleo Accumbens/fisiologia , Transtornos Relacionados ao Uso de Substâncias/fisiopatologia , Animais , Cocaína/farmacologia , Ácido Glutâmico/metabolismo , Humanos , Microglia/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos
7.
J Neurosci ; 39(39): 7801-7809, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31409665

RESUMO

Cocaine-induced plasticity persists during abstinence and is thought to underlie cue-evoked craving. Reversing this plasticity could provide an opportunity for therapeutic intervention. Converging evidence suggest that zeta inhibitory peptide (ZIP) eliminates memories for experience-dependent behaviors, including conditioned drug associations. However, the effect of ZIP on reward seeking and drug-induced plasticity is unknown. The current study examined the effect of ZIP administration in the nucleus accumbens on reinstatement (RI) of cocaine seeking, a rodent model of relapse. We demonstrate that intra-accumbal ZIP administration blocks cocaine-primed RI in rats when administered 24 h or 1 week before testing. These effects of ZIP on drug seeking are specific, as we did not see any effect of ZIP on RI of sucrose seeking. ZIP is a synthetic compound designed to inhibit the atypical PKC, PKMζ, a protein implicated in learning and memory. However, recent evidence from PKMζ-knock-out (KO) mice suggests that ZIP may function through alternative mechanisms. In support of this, we found that ZIP was able to block cue-induced RI in PKMζ-KO mice. One possible mechanism underlying addictive phenotypes is the ability of cocaine to block further plasticity. We hypothesized that ZIP may be working to reverse this anaplasticity. Although ZIP has no effect on accumbal LTD in slices from naive or yoked saline mice, it is able to restore both NMDA-dependent and mGluR5-dependent LTD in animals after cocaine self-administration and withdrawal. These findings demonstrate that intra-accumbal ZIP persistently reverses cocaine-induced behavioral and synaptic plasticity in male and female rodents.SIGNIFICANCE STATEMENT Zeta-inhibitory peptide (ZIP) has been shown to disrupt memory maintenance for experience-dependent behaviors. We examined the effect of ZIP infused into the nucleus accumbens on the reinstatement (RI) of cocaine seeking. We found that intra-accumbal ZIP blocked RI of cocaine seeking 24 h and 1 week later. This effect was specific to RI of cocaine seeking as ZIP did not disrupt RI of food seeking. In conjunction with these behavioral studies we examined the ability of ZIP to reverse cocaine-induced deficits in LTD. We found that ZIP was able to rescue two forms of LTD in cocaine-experienced mice. These studies demonstrate that ZIP is able to reverse cocaine-induced behavioral and synaptic plasticity in a persistent manner.


Assuntos
Peptídeos Penetradores de Células/farmacologia , Cocaína/farmacologia , Comportamento de Procura de Droga/fisiologia , Lipopeptídeos/farmacologia , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Animais , Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Extinção Psicológica/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Accumbens/fisiologia , Peptídeos/farmacologia , Ratos , Ratos Sprague-Dawley
8.
Neuropharmacology ; 157: 107672, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31233823

RESUMO

Glutamate receptor interacting protein (GRIP) is a neuronal scaffolding protein that anchors GluA2-containing AMPA receptors to the cell membrane. GRIP plays a critical role in activity-dependent synaptic plasticity, including that which occurs after drug exposure. Given that cocaine administration alters glutamate receptor trafficking within the prefrontal cortex (PFC), a better understanding of the role of receptor trafficking proteins could lead to a more complete understanding of addictive phenotypes. AMPA receptor trafficking in general, and GRIP specifically, is known to play a role in cocaine seeking and conditioned reward in the nucleus accumbens, but its role in the PFC has not been characterized. The current study demonstrates that conditional deletion of GRIP1 in the medial prefrontal cortex increases the motivation for cocaine and potentiates cue-induced reinstatement of cocaine seeking in male and female mice. As no effects of PFC GRIP1 deletion were seen in reinstatement of food seeking, strategy set-shifting, or reversal learning the effects on cocaine seeking are not related to generalized alterations in cognitive function. While disrupting GRIP1 might be expected to lead to decreased AMPA transmission, our electrophysiological data indicate an increase in sEPSC amplitude in the prefrontal cortex and a corresponding decrease in paired pulse facilitation in the nucleus accumbens. Taken together this suggests a strengthening of the PFC to NAc input following prefrontal GRIP1 deletion that may mediate the enhanced drug seeking behavior.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Comportamento de Procura de Droga/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Córtex Pré-Frontal/fisiologia , Reversão de Aprendizagem/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Cocaína/farmacologia , Condicionamento Operante/efeitos dos fármacos , Sinais (Psicologia) , Extinção Psicológica/fisiologia , Feminino , Masculino , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Núcleo Accumbens/fisiologia , Esquema de Reforço , Autoadministração , Sacarose/farmacologia
9.
Neuropsychopharmacology ; 43(12): 2390-2398, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30111812

RESUMO

The constitutively active, atypical protein kinase C, protein kinase M-ζ (PKMζ), is exclusively expressed in the brain and its expression increases following exposure to drugs of abuse. However, the limitations of currently available tools have made it difficult to examine the role of PKMζ in cocaine self-administration and relapse. The current study demonstrates that constitutive deletion of PKMζ potentiates cue-induced reinstatement of cocaine seeking and increases both food and cocaine self-administration, without affecting cue-driven food seeking in both male and female mice. Conditional deletion of PKMζ within the nucleus accumbens recapitulated the increase in cocaine taking and seeking seen in the constitutive knockout mice, but only in male animals. Site-specific knockdown of PKMζ in the nucleus accumbens had no effect on cocaine taking or seeking in female mice. Additionally, neither male nor female mice exhibited any alterations in food self-administration or cue-induced reinstatement of food seeking following accumbal deletion of PKMζ. Taken together these results indicate that PKMζ may act to dampen cocaine taking and seeking. Furthermore, these results indicate that PKMζ is playing divergent roles in reward seeking in males and females.


Assuntos
Cocaína/administração & dosagem , Deleção de Genes , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/enzimologia , Proteína Quinase C/deficiência , Animais , Inibidores da Captação de Dopamina/administração & dosagem , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Quinase C/genética
10.
Elife ; 52016 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-27671733

RESUMO

In humans, activation of the ventral striatum, a region associated with reward processing, is associated with the extinction of fear, a goal in the treatment of fear-related disorders. This evidence suggests that extinction of aversive memories engages reward-related circuits, but a causal relationship between activity in a reward circuit and fear extinction has not been demonstrated. Here, we identify a basolateral amygdala (BLA)-ventral striatum (NAc) pathway that is activated by extinction training. Enhanced recruitment of this circuit during extinction learning, either by pairing reward with fear extinction training or by optogenetic stimulation of this circuit during fear extinction, reduces the return of fear that normally follows extinction training. Our findings thus identify a specific BLA-NAc reward circuit that can regulate the persistence of fear extinction and point toward a potential therapeutic target for disorders in which the return of fear following extinction therapy is an obstacle to treatment.

11.
J Immunol ; 194(3): 983-9, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25512601

RESUMO

The regulation of the innate and the adaptive immune responses are extensively intertwined and tightly regulated. Ag-driven immune responses that are modulated by immune complexes (ICs) are known to inhibit IFN-γ-dependent MHC class II expression. We have previously demonstrated that ICs dramatically inhibit IFN-γ-induced activation of human monocytes through the activation of the FcγRI signaling pathway. In the present study we further explore the mechanisms by which ICs regulate IFN-γ activation of human monocytes. We demonstrate that members of the SRC kinase family (SKF) are key mediators of IFN-γ pathway suppression: inhibitors of the SKF reverse the ability of ICs to suppress IFN-γ signaling. Small interfering RNA was used to target specific members of the SKF. The data indicate that SRC and LYN are both required for ICs to elicit their immunosuppressive activity, whereas FYN does not appear to contribute to this function. Similarly, the kinase SYK, though not a member of the SKF, is also demonstrated to be involved in this IC-mediated immunosuppression. Our data suggest a mechanism whereby ICs directly inhibit inflammatory signals by crosslinking FcγRI, resulting in the activation of the specific phosphotyrosine kinases SRC, LYN, and SYK and the concomitant suppression of the IFN-γ signaling pathway.


Assuntos
Complexo Antígeno-Anticorpo/imunologia , Monócitos/imunologia , Monócitos/metabolismo , Quinases da Família src/metabolismo , Células Cultivadas , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Ativação Enzimática , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Interferon gama/farmacologia , Monócitos/efeitos dos fármacos , Fosforilação , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica
12.
MAbs ; 6(6): 1377-84, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25484046

RESUMO

Antibodies evoke cellular responses through the binding of their Fc region to Fc receptors, most of which contain immunoreceptor tyrosine-based activation motif domains and are thus considered "activating." However, there is a growing appreciation of these receptors for their ability to deliver an inhibitory signal as well. We previously described one such phenomenon whereby interferon (IFN)γ signaling is inhibited by immune complex signaling through FcγRI. To understand the implications of this in the context of therapeutic antibodies, we assessed individual IgG subclasses to determine their ability to deliver this anti-inflammatory signal in monocyte-derived macrophages. Like IgG1, we found that IgG4 is fully capable of inhibiting IFNγ-mediated events. In addition, F(ab')2 fragments that interfere with FcγRI signaling reversed this effect. For mAbs developed with either an IgG1 or an IgG4 constant region for indications where inflammation is undesirable, further examination of a potential Fc-dependent contribution to their mechanism of action is warranted.


Assuntos
Imunoglobulina G/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Receptores de IgG/imunologia , Células Cultivadas , Citometria de Fluxo , Humanos , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fab das Imunoglobulinas/metabolismo , Imunofenotipagem , Interferon gama/imunologia , Interferon gama/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , Receptores de IgG/metabolismo , Transdução de Sinais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...