Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Environ Int ; 185: 108512, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38412566

RESUMO

BACKGROUND: Sporadic Alzheimer's disease (AD) occurs in 99% of all cases and can be influenced by air pollution such as diesel emissions and more recently, an iron oxide particle, magnetite, detected in the brains of AD patients. However, a mechanistic link between air pollutants and AD development remains elusive. AIM: To study the development of AD-relevant pathological effects induced by air pollutant particle exposures and their mechanistic links, in wild-type and AD-predisposed models. METHODS: C57BL/6 (n = 37) and APP/PS1 transgenic (n = 38) mice (age 13 weeks) were exposed to model pollutant iron-based particle (Fe0-Fe3O4, dTEM = 493 ± 133 nm), hydrocarbon-based diesel combustion particle (43 ± 9 nm) and magnetite (Fe3O4, 153 ± 43 nm) particles (66 µg/20 µL/third day) for 4 months, and were assessed for behavioural changes, neuronal cell loss, amyloid-beta (Aß) plaque, immune response and oxidative stress-biomarkers. Neuroblastoma SHSY5Y (differentiated) cells were exposed to the particles (100 µg/ml) for 24 h, with assessments on immune response biomarkers and reactive oxygen species generation. RESULTS: Pollutant particle-exposure led to increased anxiety and stress levels in wild-type mice and short-term memory impairment in AD-prone mice. Neuronal cell loss was shown in the hippocampal and somatosensory cortex, with increased detection of Aß plaque, the latter only in the AD-predisposed mice, with the wild-type not genetically disposed to form the plaque. The particle exposures however, increased AD-relevant immune system responses, including inflammation, in both strains of mice. Exposures also stimulated oxidative stress, although only observed in wild-type mice. The in vitro studies complemented the immune response and oxidative stress observations. CONCLUSIONS: This study provides insights into the mechanistic links between inflammation and oxidative stress to pollutant particle-induced AD pathologies, with magnetite apparently inducing the most pathological effects. No exacerbation of the effects was observed in the AD-predisposed model when compared to the wild-type, indicating a particle-induced neurodegeneration that is independent of disease state.


Assuntos
Poluentes Atmosféricos , Doença de Alzheimer , Humanos , Camundongos , Animais , Lactente , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/patologia , Poluentes Atmosféricos/toxicidade , Óxido Ferroso-Férrico/toxicidade , Camundongos Endogâmicos C57BL , Peptídeos beta-Amiloides/toxicidade , Inflamação , Placa Amiloide , Biomarcadores , Modelos Animais de Doenças
2.
Int J Mol Sci ; 24(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37047355

RESUMO

Cardiovascular disease (CVD) is a leading cause of mortality worldwide, with cigarette smoking being a major preventable risk factor. Smoking cessation can be difficult due to the addictive nature of nicotine and the withdrawal symptoms following cessation. Electronic cigarettes (e-Cigs) have emerged as an alternative smoking cessation device, which has been increasingly used by non-smokers; however, the cardiovascular effects surrounding the use of e-Cigs remains unclear. This study aimed to investigate the effects of e-Cig aerosol condensate (EAC) (0 mg and 18 mg nicotine) in vitro on human coronary artery endothelial cells (HCAEC) and in vivo on the cardiovascular system using a mouse model of 'e-vaping'. In vitro results show a decrease in cell viability of HCAEC when exposed to EAC either directly or after exposure to conditioned lung cell media (p < 0.05 vs. control). Reactive oxygen species were increased in HCAEC when exposed to EAC directly or after exposure to conditioned lung cell media (p < 0.0001 vs. control). ICAM-1 protein expression levels were increased after exposure to conditioned lung cell media (18 mg vs. control, p < 0.01). Ex vivo results show an increase in the mRNA levels of anti-angiogenic marker, FKBPL (p < 0.05 vs. sham), and endothelial cell adhesion molecule involved in barrier function, ICAM-1 (p < 0.05 vs. sham) in murine hearts following exposure to electronic cigarette aerosol treatment containing a higher amount of nicotine. Immunohistochemistry also revealed an upregulation of FKBPL and ICAM-1 protein expression levels. This study showed that despite e-Cigs being widely used for tobacco smoking cessation, these can negatively impact endothelial cell health with a potential to lead to the development of cardiovascular disease.


Assuntos
Doenças Cardiovasculares , Sistemas Eletrônicos de Liberação de Nicotina , Animais , Camundongos , Humanos , Nicotina/efeitos adversos , Molécula 1 de Adesão Intercelular , Células Endoteliais , Doenças Cardiovasculares/etiologia , Aerossóis , Proteínas de Ligação a Tacrolimo
3.
Biomolecules ; 13(2)2023 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-36830764

RESUMO

Heart failure (HF) is the leading cause of hospitalisations worldwide, with only 35% of patients surviving the first 5 years after diagnosis. The pathogenesis of HF with preserved ejection fraction (HFpEF) is still unclear, impeding the implementation of effective treatments. FK506-binding protein like (FKBPL) and its therapeutic peptide mimetic, AD-01, are critical mediators of angiogenesis and inflammation. Thus, in this study, we investigated-for the first time-FKBPL's role in the pathogenesis and as a biomarker of HFpEF. In vitro models of cardiac hypertrophy following exposure to a hypertensive stimulus, angiotensin-II (Ang-II, 100 nM), and/or AD-01 (100 nM), for 24 and 48 h were employed as well as human plasma samples from people with different forms of HFpEF and controls. Whilst the FKBPL peptide mimetic, AD-01, induced cardiomyocyte hypertrophy in a similar manner to Ang-II (p < 0.0001), when AD-01 and Ang-II were combined together, this process was abrogated (p < 0.01-0.0001). This mechanism appears to involve a negative feedback loop related to FKBPL (p < 0.05). In human plasma samples, FKBPL concentration was increased in HFpEF compared to controls (p < 0.01); however, similar to NT-proBNP and Gal-3, it was unable to stratify between different forms of HFpEF: acute HFpEF, chronic HFpEF and hypertrophic cardiomyopathy (HCM). FKBPL may be explored for its biomarker and therapeutic target potential in HFpEF.


Assuntos
Insuficiência Cardíaca , Hipertensão , Humanos , Insuficiência Cardíaca/diagnóstico , Volume Sistólico , Proteínas de Ligação a Tacrolimo/uso terapêutico , Biomarcadores , Proteínas de Ciclo Celular , Fragmentos de Peptídeos
4.
Diabet Med ; 40(5): e15064, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36782075

RESUMO

AIMS: The aim of this scoping review is to evaluate the current biomarkers used in the assessment of adverse cardiac remodelling in people with diabetes mellitus (DM) and in the diagnosis and prognosis of subsequent cardiovascular disease. We aim to discuss the biomarkers' pathophysiological roles as a reflection of the cardiac remodelling mechanisms in the presence of DM. METHODS: We performed the literature search to include studies from 2003 to 2021 using the following databases: MEDLINE, Scopus, Web of Science, PubMed, and Cochrane library. Articles that met our inclusion criteria were screened and appraised before being included in this review. The PRISMA guidelines for Scoping Reviews were followed. RESULTS: Our literature search identified a total of 43 eligible articles, which were included in this scoping review. We identified 15 different biomarkers, each described by at least two studies, that were used to determine signs of cardiac remodelling in cardiovascular disease (CVD) and people with DM. NT-proBNP was identified as the most frequently employed biomarker in this context; however, we also identified emerging biomarkers including hs-CRP, hs-cTnT, and Galectin-3. CONCLUSION: There is a complex relationship between DM and cardiovascular health, where more research is needed. Current biomarkers reflective of adverse cardiac remodelling in DM are often used to diagnose other CVDs, such as NT-proBNP for heart failure. Hence there is a need for identification of specific biomarkers that can detect early signs of cardiac remodelling in the presence of DM. Further research into these biomarkers and mechanisms can deepen our understanding of their role in DM-associated CVD and lead to better preventative therapies.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus , Humanos , Prognóstico , Remodelação Ventricular , Biomarcadores
5.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36768372

RESUMO

The purpose of this study is to evaluate the literature for research trends on cerium oxide from 1990 to 2020 and identify gaps in knowledge in the emerging application(s) of CeONP. Bibliometric methods were used to identify themes in database searches from PubMed, Scopus and Web of Science Core Collection using SWIFT-Review, VOSviewer and SciMAT software programs. A systematic review was completed on published cerium oxide literature extracted from the Scopus database (n = 17,115), identifying themes relevant to its industrial, environmental and biomedical applications. A total of 172 publications were included in the systematic analysis and categorized into four time periods with research themes identified; "doping additives" (n = 5, 1990-1997), "catalysts" (n = 32, 1998-2005), "reactive oxygen species" (n = 66, 2006-2013) and "pathology" (n = 69, 2014-2020). China and the USA showed the highest number of citations and publications for cerium oxide research from 1990 to 2020. Longitudinal analysis showed CeONP has been extensively used for various applications due to its catalytic properties. In conclusion, this study showed the trend in research in CeONP over the past three decades with advancements in nanoparticle engineering like doping, and more recently surface modification or functionalization to further enhanced its antioxidant abilities. As a result of recent nanoparticle engineering developments, research into CeONP biological effects have highlighted its therapeutic potential for a range of human pathologies such as Alzheimer's disease. Whilst research over the past three decades show the versatility of cerium oxide in industrial and environmental applications, there are still research opportunities to investigate the potential beneficial effects of CeONP in its application(s) on human health.


Assuntos
Antioxidantes , Cério , Humanos , Publicações , Editoração , Bibliometria
6.
Glob Chall ; 7(1): 2200009, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36618105

RESUMO

Recent reports show air pollutant magnetite nanoparticles (MNPs) in the brains of people with Alzheimer's disease (AD). Considering various field applications of MNPs because of developments in nanotechnology, the aim of this study is to identify major trends and data gaps in research on magnetite to allow for relevant environmental and health risk assessment. Herein, a bibliometric and systematic analysis of the published magnetite literature (n = 31 567) between 1990 to 2020 is completed. Following appraisal, publications (n = 244) are grouped into four time periods with the main research theme identified for each as 1990-1997 "oxides," 1998-2005 "ferric oxide," 2006-2013 "pathology," and 2014-2020 "animal model." Magnetite formation and catalytic activity dominate the first two time periods, with the last two focusing on the exploitation of nanoparticle engineering. Japan and China have the highest number of citations for articles published. Longitudinal analysis indicates that magnetite research for the past 30 years shifted from environmental and industrial applications, to biomedical and its potential toxic effects. Therefore, whilst this study presents the research profile of different countries, the development in research on MNPs, it also reveals that further studies on the effects of MNPs on human health is much needed.

7.
Cell Mol Life Sci ; 80(2): 44, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36652019

RESUMO

Preeclampsia is a pregnancy-specific cardiovascular disorder, involving significant maternal endothelial dysfunction. Although inappropriate placentation due to aberrant angiogenesis, inflammation and shallow trophoblast invasion are the root causes of preeclampsia, pathogenic mechanisms are poorly understood, particularly in early pregnancy. Here, we first confirm the abnormal expression of important vascular and inflammatory proteins, FK506-binding protein-like (FKBPL) and galectin-3 (Gal-3), in human plasma and placental tissues from women with preeclampsia and normotensive controls. We then employ a three-dimensional microfluidic placental model incorporating human umbilical vein endothelial cells (HUVECs) and a first trimester trophoblast cell line (ACH-3P) to investigate FKBPL and Gal-3 signaling in inflammatory conditions. In human samples, both circulating (n = 17 controls; n = 30 preeclampsia) and placental (n ≥ 6) FKBPL and Gal-3 levels were increased in preeclampsia compared to controls (plasma: FKBPL, p < 0.0001; Gal-3, p < 0.01; placenta: FKBPL, p < 0.05; Gal-3, p < 0.01), indicative of vascular dysfunction in preeclampsia. In our placenta-on-a-chip model, we show that endothelial cells are critical for trophoblast-mediated migration and that trophoblasts effectively remodel endothelial vascular networks. Inflammatory cytokine tumour necrosis factor-α (10 ng/mL) modulates both FKBPL and Gal-3 signaling in conjunction with trophoblast migration and impairs vascular network formation (p < 0.005). Our placenta-on-a-chip recapitulates aspects of inappropriate placental development and vascular dysfunction in preeclampsia.


Assuntos
Placenta , Pré-Eclâmpsia , Gravidez , Feminino , Humanos , Placenta/metabolismo , Galectina 3/genética , Galectina 3/metabolismo , Trofoblastos/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Proteínas de Ciclo Celular/metabolismo , Dispositivos Lab-On-A-Chip , Proteínas de Ligação a Tacrolimo/metabolismo
8.
J Neurosci Res ; 100(12): 2201-2212, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36121155

RESUMO

Compression spinal cord injuries are a common cause of morbidity in people who experience a spinal cord injury (SCI). Either as a by-product of a traumatic injury or due to nontraumatic conditions such as cervical myelitis, compression injuries are growing in prevalence clinically and many attempts of animal replication have been described within the literature. These models, however, often focus on the traumatic side of injury or mimic short-term injuries that are not representative of the majority of compression SCI. Of this, nontraumatic spinal cord injuries are severely understudied and have an increased prevalence in elderly populations, adults, and children. Therefore, there is a need to critically evaluate the current animal models of compression SCI and their suitability as a method for clinically relevant data that can help reduce morbidity and mortality of SCI. In this review, we reviewed the established and emerging methods of animal models of compression SCI. These models are the clip, balloon, solid spacer, expanding polymer, remote, weight drop, calibrated forceps, screw, and strap methods. These methods showed that there is a large reliance on the use of laminectomy to induce injury. Furthermore, the age range of many studies does not reflect the elderly and young populations that commonly suffer from compression injuries. It is therefore important to have techniques and methods that are able to minimize secondary effects of the surgeries, and are representative of the clinical cases seen so that treatments and interventions can be developed that are specific.


Assuntos
Compressão da Medula Espinal , Traumatismos da Medula Espinal , Animais , Modelos Animais de Doenças , Compressão da Medula Espinal/complicações , Traumatismos da Medula Espinal/complicações , Polímeros
9.
Int J Mol Sci ; 22(24)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34948457

RESUMO

High-fat diet (HFD)-induced comorbid cognitive and behavioural impairments are thought to be the result of persistent low-grade neuroinflammation. Metformin, a first-line medication for the treatment of type-2 diabetes, seems to ameliorate these comorbidities, but the underlying mechanism(s) are not clear. Pituitary adenylate cyclase-activating peptide (PACAP) and vasoactive intestinal peptide (VIP) are neuroprotective peptides endowed with anti-inflammatory properties. Alterations to the PACAP/VIP system could be pivotal during the development of HFD-induced neuroinflammation. To unveil the pathogenic mechanisms underlying HFD-induced neuroinflammation and assess metformin's therapeutic activities, (1) we determined if HFD-induced proinflammatory activity was present in vulnerable brain regions associated with the development of comorbid behaviors, (2) investigated if the PACAP/VIP system is altered by HFD, and (3) assessed if metformin rescues such diet-induced neurochemical alterations. C57BL/6J male mice were divided into two groups to receive either standard chow (SC) or HFD for 16 weeks. A further HFD group received metformin (HFD + M) (300 mg/kg BW daily for 5 weeks) via oral gavage. Body weight, fasting glucose, and insulin levels were measured. After 16 weeks, the proinflammatory profile, glial activation markers, and changes within the PI3K/AKT intracellular pathway and the PACAP/VIP system were evaluated by real-time qPCR and/or Western blot in the hypothalamus, hippocampus, prefrontal cortex, and amygdala. Our data showed that HFD causes widespread low-grade neuroinflammation and gliosis, with regional-specific differences across brain regions. HFD also diminished phospho-AKT(Ser473) expression and caused significant disruptions to the PACAP/VIP system. Treatment with metformin attenuated these neuroinflammatory signatures and reversed PI3K/AKT and PACAP/VIP alterations caused by HFD. Altogether, our findings demonstrate that metformin treatment rescues HFD-induced neuroinflammation in vulnerable brain regions, most likely by a mechanism involving the reinstatement of PACAP/VIP system homeostasis. Data also suggests that the PI3K/AKT pathway, at least in part, mediates some of metformin's beneficial effects.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Encefalite/tratamento farmacológico , Metformina/administração & dosagem , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/metabolismo , Animais , Estudos de Casos e Controles , Regulação para Baixo , Encefalite/induzido quimicamente , Encefalite/genética , Encefalite/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Masculino , Metformina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Transdução de Sinais/efeitos dos fármacos , Peptídeo Intestinal Vasoativo/genética
10.
Arch Cardiovasc Dis ; 114(12): 793-804, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34802963

RESUMO

BACKGROUND: A number of circulating biomarkers are currently utilized for the diagnosis of chronic heart failure with preserved ejection fraction (HFpEF). However, due to HFpEF heterogeneity, the accuracy of these biomarkers remains unclear. AIMS: This study aimed to systematically determine the diagnostic accuracy of currently available biomarkers for chronic HFpEF. METHODS: PubMed, Web of Science, MEDLINE and SCOPUS databases were searched systematically to identify studies assessing the diagnostic accuracy of biomarkers of chronic HFpEF with left ventricular ejection fraction (LVEF) ≥50%. All included studies were independently assessed for quality and relevant information was extracted. Random-effects models were used to estimate the pooled diagnostic accuracy of HFpEF biomarkers. RESULTS: The search identified 6145 studies, of which 19 were included. Four biomarkers were available for meta-analysis. The pooled sensitivity of B-type natriuretic peptide (BNP) (0.787, 95% confidence interval [CI] 0.719-0.842) was higher than that of N-terminal pro-BNP (NT-proBNP) (0.696, 95% CI 0.599-0.779) in chronic HFpEF diagnosis. However, NT-proBNP showed improved specificity (0.882, 95% CI 0.778-0.941) compared to BNP (\0.796, 95% CI 0.672-0.882). Galectin-3 (Gal-3) exhibited a reliable diagnostic adequacy for HFpEF (sensitivity 0.760, 95% CI 0.631-0.855; specificity 0.803, 95% CI 0.667-0.893). However, suppression of tumorigenesis-2 (ST2) displayed limited diagnostic performance for chronic HFpEF diagnosis (sensitivity 0.636, 95% CI 0.465-0.779; specificity 0.595, 95% CI 0.427-0.743). CONCLUSION: NT-proBNP and BNP appear to be the most reliable biomarkers in chronic HFpEF with NT-proBNP showing higher specificity and BNP showing higher sensitivity. Although Gal-3 appears more reliable than ST2 in HFpEF diagnosis, the conclusions are limited as only three studies were included in this meta-analysis.


Assuntos
Insuficiência Cardíaca , Biomarcadores , Insuficiência Cardíaca/diagnóstico , Humanos , Peptídeo Natriurético Encefálico , Fragmentos de Peptídeos , Prognóstico , Volume Sistólico , Função Ventricular Esquerda
11.
Front Endocrinol (Lausanne) ; 12: 728396, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34456879

RESUMO

Background: There are a growing number of publications that report an absence of inflammatory based disease among populations that are endemic to parasitic worms (helminths) demonstrating the ability of these parasites to potentially regulate human immune responses. The aim of this systematic review and meta-analysis was to determine the impact of helminth infection on metabolic outcomes in human populations. Methods: Using PRISMA guidelines, six databases were searched for studies published up to August 2020. Random effects meta-analysis was performed to estimate pooled proportions with 95% confidence intervals using the Review Manager Software version 5.4.1. Results: Fourteen studies were included in the review. Fasting blood glucose was significantly lower in persons with infection (MD -0.22, 95% CI -0.40- -0.04, P=0.02), HbA1c levels were lower, although not significantly, and prevalence of the metabolic syndrome (P=0.001) and type 2 diabetes was lower (OR 1.03, 95% CI 0.34-3.09, P<0.0001). Infection was negatively associated with type 2 diabetes when comparing person with diabetes to the group without diabetes (OR 0.44, 95% CI 0.29-0.67, P=0.0001). Conclusions: While infection with helminths was generally associated with improved metabolic function, there were notable differences in efficacy between parasite species. Based on the data assessed, live infection with S. mansoni resulted in the most significant positive changes to metabolic outcomes. Systematic Review Registration: Website: PROSPERO Identified: CRD42021227619.


Assuntos
Helmintíase/epidemiologia , Síndrome Metabólica/epidemiologia , Animais , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/etiologia , Helmintíase/complicações , Helmintos , Humanos , Incidência , Síndrome Metabólica/etiologia , Prevalência , Fatores de Risco
12.
Nanomedicine (Lond) ; 16(22): 1999-2012, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34435509

RESUMO

Background: Overexpression of sFlt-1 or modulation of FKBPL, key antiangiogenic proteins, are important in the pathogenesis of preeclampsia. Methods: A newly developed nonviral gene-delivery system, RALA, capable of overexpressing sFlt-1 (e15a isoform) was delivered in vivo in transgenic haploinsufficient (Fkbpl+/-) mice. RALA was also used in vitro to deliver human Flt1 (hFlt1) in trophoblast cells. Results: Serum stable and nontoxic RALA/DNA-based nanoparticles induced an increase in sFlt-1 protein levels in the blood and total protein in the urine; the effect was more pronounced in Fkbpl+/- mice. In vitro, RALA-hFlt nanoparticles significantly reduced secretion of sFlt-1 in trophoblast cells. Conclusion: The RALA-based genetic nanodelivery system can be safely and effectively applied to emulate preeclampsia-like features or reduce sFlt-1 levels in vitro.


Lay abstract In this study, the investigators utilized a safe and effective approach to modulate an important circulating protein in pregnancy, sFlt-1, associated with the pregnancy complication, preeclampsia. Preeclampsia is a complex and multifactorial disease and a leading cause of death in pregnancy with no current effective treatment strategies. This is likely due to a lack of reliable preclinical models that replicate human disease. The authors demonstrate the feasibility of a new preeclampsia-like model based on the dysfunction of two key vascular proteins, sFlt-1 and FKBPL (an important protein involved in the development of new blood vessels), that could be utilized in the future for testing and development of new treatments targeting these important mechanisms in preeclampsia.


Assuntos
Terapia Genética , Pré-Eclâmpsia , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Animais , Feminino , Vetores Genéticos , Camundongos , Camundongos Transgênicos , Nanopartículas , Placenta , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/terapia , Gravidez , Isoformas de Proteínas , Trofoblastos
13.
Cells ; 10(4)2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33919808

RESUMO

Preeclampsia is a multifactorial cardiovascular disorder diagnosed after 20 weeks of gestation, and is the leading cause of death for both mothers and babies in pregnancy. The pathophysiology remains poorly understood due to the variability and unpredictability of disease manifestation when studied in animal models. After preeclampsia, both mothers and offspring have a higher risk of cardiovascular disease (CVD), including myocardial infarction or heart attack and heart failure (HF). Myocardial infarction is an acute myocardial damage that can be treated through reperfusion; however, this therapeutic approach leads to ischemic/reperfusion injury (IRI), often leading to HF. In this review, we compared the current in vivo, in vitro and ex vivo model systems used to study preeclampsia, IRI and HF. Future studies aiming at evaluating CVD in preeclampsia patients could benefit from novel models that better mimic the complex scenario described in this article.


Assuntos
Doenças Cardiovasculares/complicações , Doenças Cardiovasculares/patologia , Modelos Biológicos , Pré-Eclâmpsia/patologia , Feminino , Insuficiência Cardíaca/complicações , Humanos , Microfluídica , Traumatismo por Reperfusão Miocárdica/complicações , Gravidez
14.
Biol Sex Differ ; 12(1): 31, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33879252

RESUMO

BACKGROUND: Preeclampsia is a dangerous cardiovascular disorder of pregnancy that leads to an increased risk of future cardiovascular and metabolic disorders. Much of the pathogenesis and mechanisms involved in cardiac health in preeclampsia are unknown. A novel anti-angiogenic protein, FKBPL, is emerging as having a potential role in both preeclampsia and cardiovascular disease (CVD). Therefore, in this study we aimed to characterise cardiac health and FKBPL regulation in the rat reduced uterine perfusion pressure (RUPP) and a 3D cardiac spheroid model of preeclampsia. METHODS: The RUPP model was induced in pregnant rats and histological analysis performed on the heart, kidney, liver and placenta (n ≥ 6). Picrosirius red staining was performed to quantify collagen I and III deposition in rat hearts, placentae and livers as an indicator of fibrosis. RT-qPCR was used to determine changes in Fkbpl, Icam1, Vcam1, Flt1 and Vegfa mRNA in hearts and/or placentae and ELISA to evaluate cardiac brain natriuretic peptide (BNP45) and FKBPL secretion. Immunofluorescent staining was also conducted to analyse the expression of cardiac FKBPL. Cardiac spheroids were generated using human cardiac fibroblasts and human coronary artery endothelial cells and treated with patient plasma from normotensive controls, early-onset preeclampsia (EOPE) and late-onset preeclampsia (LOPE); n = 3. FKBPL and CD31 expression was quantified by immunofluorescent labelling. RESULTS: The RUPP procedure induced significant increases in blood pressure (p < 0.001), collagen deposition (p < 0.001) and cardiac BNP45 (p < 0.05). It also induced a significant increase in cardiac FKBPL mRNA (p < 0.05) and protein  expression  (p < 0.01). RUPP placentae also exhibited increased collagen deposition and decreased Flt1 mRNA expression (p < 0.05). RUPP kidneys revealed an increase in average glomerular size (p < 0.05). Cardiac spheroids showed a significant increase in FKBPL expression when treated with LOPE plasma (p < 0.05) and a trend towards increased FKBPL expression following treatment with EOPE plasma (p = 0.06). CONCLUSIONS: The rat RUPP model induced cardiac, renal and placental features reflective of preeclampsia. FKBPL was increased in the hearts of RUPP rats and cardiac spheroids treated with plasma from women with preeclampsia, perhaps reflective of restricted angiogenesis and inflammation in this disorder. Elucidation of these novel FKBPL mechanisms in cardiac health in preeclampsia could be key in preventing future CVD.


Assuntos
Pré-Eclâmpsia , Animais , Colágeno , Células Endoteliais , Feminino , Humanos , Perfusão , Placenta , Gravidez , Complicações Cardiovasculares na Gravidez , RNA Mensageiro , Ratos , Ratos Sprague-Dawley , Caracteres Sexuais , Proteínas de Ligação a Tacrolimo
15.
PLoS One ; 15(1): e0226931, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31914125

RESUMO

BACKGROUND: Apolipoprotein-AI (apo-AI) is the major apolipoprotein found in high density lipoprotein particles (HDLs). We previously demonstrated that apo-AI injected directly into high-fat diet fed mice improved insulin sensitivity associated with decreased hepatic inflammation. While our data provides compelling proof of concept, apoA-I mimetic peptides are more clinically feasible. The aim of this study was to test whether apo-AI mimetic peptide (D-4F and L-5F) treatment will emulate the effects of full-length apo-AI to improve insulin sensitivity. METHODS: Male C57BL/6 mice were fed a high-fat diet for 16 weeks before receiving D4F mimetic peptide administered via drinking water or L5F mimetic peptide administered by intraperitoneal injection bi-weekly for a total of five weeks. Glucose tolerance and insulin tolerance tests were conducted to assess the effects of the peptides on insulin resistance. Effects of the peptides on inflammation, gluconeogenic enzymes and lipid synthesis were assessed by real-time PCR of key markers involved in the respective pathways. RESULTS: Treatment with apo-AI mimetic peptides D-4F and L-5F showed: (i) improved blood glucose clearance (D-4F 1.40-fold AUC decrease compared to HFD, P<0.05; L-4F 1.17-fold AUC decrease compared to HFD, ns) in the glucose tolerance test; (ii) improved insulin tolerance (D-4F 1.63-fold AUC decrease compared to HFD, P<0.05; L-5F 1.39-fold AUC compared to HFD, P<0.05) in the insulin tolerance test. The metabolic test results were associated with (i) decreased hepatic inflammation of SAA1, IL-1ß IFN-γ and TNFα (2.61-5.97-fold decrease compared to HFD, P<0.05) for both mimetics; (ii) suppression of hepatic mRNA expression of gluconeogenesis-associated genes (PEPCK and G6Pase; 1.66-3.01-fold decrease compared to HFD, P<0.001) for both mimetics; (iii) lipogenic-associated genes, (SREBP1c and ChREBP; 2.15-3.31-fold decrease compared to HFD, P<0.001) for both mimetics and; (iv) reduced hepatic macrophage infiltration (F4/80 and CD68; 1.77-2.15-fold compared to HFD, P<0.001) for both mimetics. CONCLUSION: Apo-AI mimetic peptides treatment led to improved glucose homeostasis. This effect is associated with reduced expression of inflammatory markers in the liver and reduced infiltration of macrophages, suggesting an overall suppression of hepatic inflammation. We also showed altered expression of genes associated with gluconeogenesis and lipid synthesis, suggesting that glucose and lipid synthesis is suppressed. These findings suggest that apoA-I mimetic peptides could be a new therapeutic option to reduce hepatic inflammation that contributes to the development of overnutrition-induced insulin resistance.


Assuntos
Apolipoproteína A-I/uso terapêutico , Inflamação/tratamento farmacológico , Resistência à Insulina , Peptídeos e Proteínas de Sinalização Intercelular/uso terapêutico , Fígado/efeitos dos fármacos , Animais , Glicemia/análise , Inflamação/patologia , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL
16.
Toxicol Sci ; 172(1): 191-200, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31505003

RESUMO

Maternal smoking is currently a public health concern and has been associated with a number of complications in the offspring. E-cigarettes are gaining popularity as a "safer" alternative to tobacco cigarettes during pregnancy, however, there are a limited number of studies to suggest that it is actually "safe." Balb/C female mice were exposed to ambient air (n = 8; Sham), or tobacco cigarette smoke (n = 8; SE) before gestation, during gestation and lactation. A third group was exposed to cigarette smoke before gestation followed by e-cigarette aerosols during gestation and lactation (n = 8; Switch). Male offspring (12-week old, n = 10-14/group) underwent behavioral assessments to investigate short-term memory, anxiety, and activity using the novel object recognition and elevated plus maze tests. Brains were collected at postnatal day (P)1, P20, and Week 13 for global DNA methylation, epigenetic gene expression, and neuronal cell counts. The offspring from mothers switching to e-cigarettes exhibited no change in exploration/activity but showed a decrease in global DNA methylation, Aurora Kinase (Aurk) A and AurkB gene expression and a reduction in neuronal cell numbers in the cornu ammonis 1 region of the dorsal hippocampus compared with the SE group. Continuous tobacco cigarette smoke exposure during pregnancy resulted in marked neurological deficits in the offspring. Switching to e-cigarettes during pregnancy reduced these neurological deficits compared with cigarette smoke exposure. However, neurological changes were still observed, so we therefore conclude that e-cigarette use during pregnancy is not advised.

18.
Chem Res Toxicol ; 31(7): 601-611, 2018 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-29863869

RESUMO

Electronic cigarette (e-cigarette) use is on the rise worldwide and is particularly attractive to young people and as a smoking substitute by pregnant woman. There is a perception in pregnant women and women of child-bearing age that the use of e-cigarettes (vaping) is safer than smoking tobacco cigarettes during pregnancy. However, there is little evidence to support this perception. Here, we examined the offspring from mouse dams that had been exposed during and after pregnancy to ambient air (sham) ( n = 8), e-cigarette aerosols with nicotine ( n = 8), or e-cigarette aerosols without nicotine ( n = 8). Offspring underwent cognitive testing at 12 weeks of age and epigenetic testing of brain tissues at 1 day, 20 days, and 13 weeks after birth. The findings showed deficits in short-term memory, reduced anxiety, and hyperactivity in offspring following maternal e-cigarette exposure using the novel object recognition and elevated plus maze tests. In addition, global DNA methylation was increased in the brains of offspring soon after birth. Using a quantitative-PCR array specific to chromatin modification enzymes on genomic DNA and histones,13 key genes were identified to be significantly altered in the offspring brains from the e-cigarette groups compared to the nonexposed groups. The changes to genes Aurka, Aurkb, Aurkc, Kdm5c, Kdm6b, Dnmt3a, Dnmt3b, and Atf2, all associated with modulating neurological activity, were validated using RT-qPCR. In conclusion, in a mouse model, maternal exposure to e-cigarette aerosols resulted in both cognitive and epigenetic changes in offspring. This suggests that the use of e-cigarettes during pregnancy may have hitherto undetected neurological consequences on newborns.


Assuntos
Cognição , Sistemas Eletrônicos de Liberação de Nicotina , Epigênese Genética , Exposição Materna , Aerossóis/química , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/metabolismo , Cognição/efeitos dos fármacos , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/efeitos dos fármacos , Modelos Animais de Doenças , Epigênese Genética/efeitos dos fármacos , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Nicotina/toxicidade , Oxirredutases N-Desmetilantes/genética , Oxirredutases N-Desmetilantes/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal
19.
J Nanobiotechnology ; 16(1): 11, 2018 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-29409496

RESUMO

BACKGROUND: Obesity is a high risk for multiple metabolic disorders due to excessive influx of energy, glucose and lipid, often from a western based diet. Low-grade inflammation plays a key role in the progression of such metabolic disorders. The anti-inflammatory property of gold compounds has been used in treating rheumatoid arthritis in the clinic. Previously we found that pure gold nanoparticles (AuNPs, 21 nm) also possess anti-inflammatory effects on the retroperitoneal fat tissue following intraperitoneal injection, by downregulating tumor necrosis factor (TNF) α. However, whether such an effect can change the risk of metabolic disorders in the obese has not been well studied. The study employed C57BL/6 mice fed a pellet high fat diet (HFD, 43% as fat) that were treated daily with AuNPs [low (HFD-LAu) or high (HFD-HAu) dose] via intraperitoneal injection for 9 weeks. In the in vitro study, RAW264.7 macrophages and 3T3-L1 adipocytes were cultured with low and high concentrations of AuNPs alone or together. RESULTS: The HFD-fed mice showed a significant increase in fat mass, glucose intolerance, dyslipidemia, and liver steatosis. The HFD-LAu group showed an 8% reduction in body weight, ameliorated hyperlipidemia, and normal glucose tolerance; while the HFD-HAu group had a 5% reduction in body weight with significant improvement in their glucose intolerance and hyperlipidemia. The underlying mechanism may be attributed to a reduction in adipose and hepatic local proinflammatory cytokine production, e.g. TNFα. In vitro studies of co-cultured murine RAW264.7 macrophage and 3T3-L1 adipocytes supported this proposed mechanism. CONCLUSION: AuNPs demonstrate a promising profile for potential management of obesity related glucose and lipid disorders and are useful as a research tool for the study of biological mechanisms.


Assuntos
Ouro/química , Metaboloma , Metabolômica , Nanopartículas Metálicas/química , Células 3T3-L1 , Adipócitos/metabolismo , Animais , Biomarcadores/metabolismo , Técnicas de Cocultura , Dieta Hiperlipídica , Teste de Tolerância a Glucose , Inflamação/genética , Fígado/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Distribuição Tecidual
20.
Am J Respir Cell Mol Biol ; 58(3): 366-377, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28960086

RESUMO

E-cigarette usage is increasing, especially among the young, with both the general population and physicians perceiving them as a safe alternative to tobacco smoking. Worryingly, e-cigarettes are commonly used by pregnant women. As nicotine is known to adversely affect children in utero, we hypothesized that nicotine delivered via e-cigarettes would negatively affect lung development. To test this, we developed a mouse model of maternal e-vapor (nicotine and nicotine-free) exposure and investigated the impact on the growth and lung inflammation in both offspring and mothers. Female Balb/c mice were exposed to e-fluid vapor containing nicotine (18 mg/ml nicotine E-cigarette [E-cig18], equivalent to two cigarettes per treatment, twice daily,) or nicotine free (E-cig0 mg/ml) from 6 weeks before mating until pups weaned. Male offspring were studied at Postnatal Day (P) 1, P20, and at 13 weeks. The mothers were studied when the pups weaned. In the mothers' lungs, e-cigarette exposure with and without nicotine increased the proinflammatory cytokines IL-1ß, IL-6, and TNF-α. In adult offspring, TNF-α protein levels were increased in both E-cig18 and E-cig0 groups, whereas IL-1ß was suppressed. This was accompanied by global changes in DNA methylation. In this study, we found that e-cigarette exposure during pregnancy adversely affected maternal and offspring lung health. As this occurred with both nicotine-free and nicotine-containing e-vapor, the effects are likely due to by-products of vaporization rather than nicotine.


Assuntos
Metilação de DNA/genética , Sistemas Eletrônicos de Liberação de Nicotina , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Pulmão/embriologia , Nicotina/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/patologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Feminino , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Gravidez , Fumar/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...