Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38562904

RESUMO

Recent FDA approvals of chimeric antigen receptor (CAR) T cell therapy for multiple myeloma (MM) have reshaped the therapeutic landscape for this incurable cancer. In pivotal clinical trials B cell maturation antigen (BCMA) targeted, 4-1BB co-stimulated (BBζ) CAR T cells dramatically outperformed standard-of-care chemotherapy, yet most patients experienced MM relapse within two years of therapy, underscoring the need to improve CAR T cell efficacy in MM. We set out to determine if inhibition of MM bone marrow microenvironment (BME) survival signaling could increase sensitivity to CAR T cells. In contrast to expectations, blocking the CD28 MM survival signal with abatacept (CTLA4-Ig) accelerated disease relapse following CAR T therapy in preclinical models, potentially due to blocking CD28 signaling in CAR T cells. Knockout studies confirmed that endogenous CD28 expressed on BBζ CAR T cells drove in vivo anti-MM activity. Mechanistically, CD28 reprogrammed mitochondrial metabolism to maintain redox balance and CAR T cell proliferation in the MM BME. Transient CD28 inhibition with abatacept restrained rapid BBζ CAR T cell expansion and limited inflammatory cytokines in the MM BME without significantly affecting long-term survival of treated mice. Overall, data directly demonstrate a need for CD28 signaling for sustained in vivo function of CAR T cells and indicate that transient CD28 blockade could reduce cytokine release and associated toxicities.

2.
J Immunother Cancer ; 11(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37647218

RESUMO

BACKGROUND: Cancer immunotherapies can produce complete therapeutic responses, however, outcomes in ovarian cancer (OC) are modest. While adoptive T-cell transfer (ACT) has been evaluated in OC, durable effects are rare. Poor therapeutic efficacy is likely multifactorial, stemming from limited antigen recognition, insufficient tumor targeting due to a suppressive tumor microenvironment (TME), and limited intratumoral accumulation/persistence of infused T cells. Importantly, host T cells infiltrate tumors, and ACT approaches that leverage endogenous tumor-infiltrating T cells for antitumor immunity could effectively magnify therapeutic responses. METHODS: Using retroviral transduction, we have generated T cells that secrete a folate receptor alpha (FRα)-directed bispecific T-cell engager (FR-B T cells), a tumor antigen commonly overexpressed in OC and other tumor types. The antitumor activity and therapeutic efficacy of FR-B T cells was assessed using FRα+ cancer cell lines, OC patient samples, and preclinical tumor models with accompanying mechanistic studies. Different cytokine stimulation of T cells (interleukin (IL)-2+IL-7 vs IL-2+IL-15) during FR-B T cell production and the resulting impact on therapeutic outcome following ACT was also assessed. RESULTS: FR-B T cells efficiently lysed FRα+ cell lines, targeted FRα+ OC patient tumor cells, and were found to engage and activate patient T cells present in the TME through secretion of T cell engagers. Additionally, FR-B T cell therapy was effective in an immunocompetent in vivo OC model, with response duration dependent on both endogenous T cells and FR-B T cell persistence. IL-2/IL-15 preconditioning prior to ACT produced less differentiated FR-B T cells and enhanced therapeutic efficacy, with mechanistic studies revealing preferential accumulation of TCF-1+CD39-CD69- stem-like CD8+ FR B T cells in the peritoneal cavity over solid tumors. CONCLUSIONS: These findings highlight the therapeutic potential of FR-B T cells in OC and suggest FR-B T cells can persist in extratumoral spaces while actively directing antitumor immunity. As the therapeutic activity of infused T cell therapies in solid tumor indications is often limited by poor intratumoral accumulation of transferred T cells, engager-secreting T cells that can effectively leverage endogenous immunity may have distinct mechanistic advantages for enhancing therapeutic responses rates.


Assuntos
Interleucina-15 , Neoplasias Ovarianas , Feminino , Humanos , Linfócitos T CD8-Positivos , Interleucina-2 , Neoplasias Ovarianas/terapia , Células-Tronco , Microambiente Tumoral
3.
Nat Biomed Eng ; 7(9): 1188-1203, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37037966

RESUMO

The clinical use of tumour-infiltrating lymphocytes for the treatment of solid tumours is hindered by the need to obtain large and fresh tumour fractions, which is often not feasible in patients with unresectable tumours or recurrent metastases. Here we show that circulating tumour-reactive lymphocytes (cTRLs) can be isolated from peripheral blood at high yield and purity via microfluidic immunomagnetic cell sorting, allowing for comprehensive downstream analyses of these rare cells. We observed that CD103 is strongly expressed by the isolated cTRLs, and that in mice with subcutaneous tumours, tumour-infiltrating lymphocytes isolated from the tumours and rapidly expanded CD8+CD103+ cTRLs isolated from blood are comparably potent and respond similarly to immune checkpoint blockade. We also show that CD8+CD103+ cTRLs isolated from the peripheral blood of patients and co-cultured with tumour cells dissociated from their resected tumours resulted in the enrichment of interferon-γ-secreting cell populations with T-cell-receptor clonotypes substantially overlapping those of the patients' tumour-infiltrating lymphocytes. Therapeutically potent cTRLs isolated from peripheral blood may advance the clinical development of adoptive cell therapies.


Assuntos
Microfluídica , Neoplasias , Animais , Camundongos , Linfócitos T CD8-Positivos , Neoplasias/terapia , Linfócitos do Interstício Tumoral , Interferon gama
4.
Mol Ther Oncolytics ; 28: 230-248, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36875325

RESUMO

Tumor antigen-driven responses to weakly immunogenic self-antigens and neoantigens directly affect treatment efficacy following immunotherapy. Using orthotopically grown SV40 T antigen+ ovarian carcinoma in antigen-naive wild-type or TgMISIIR-TAg-Low transgenic mice expressing SV40 T antigen as a self-antigen, we investigated the impact of CXCR4-antagonist-armed oncolytic virotherapy on tumor progression and antitumor immunity. Immunostaining and single-cell RNA sequencing analyses of the peritoneal tumor microenvironment of untreated tumors in syngeneic wild-type mice revealed the presence of SV40 T antigen-specific CD8+ T cells, a balanced M1/M2 transcriptomic signature of tumor-associated macrophages, and immunostimulatory cancer-associated fibroblasts. This contrasted with polarized M2 tumor-associated macrophages, immunosuppressive cancer-associated fibroblasts, and poor immune activation in TgMISIIR-TAg-Low mice. Intraperitoneal delivery of CXCR4-antagonist-armed oncolytic vaccinia virus led to nearly complete depletion of cancer-associated fibroblasts, M1 polarization of macrophages, and generation of SV40 T antigen-specific CD8+ T cells in transgenic mice. Cell depletion studies revealed that the therapeutic effect of armed oncolytic virotherapy was dependent primarily on CD8+ cells. These results demonstrate that targeting the interaction between immunosuppressive cancer-associated fibroblasts and macrophages in the tolerogenic tumor microenvironment by CXCR4-A-armed oncolytic virotherapy induces tumor/self-specific CD8+ T cell responses and consequently increases therapeutic efficacy in an immunocompetent ovarian cancer model.

5.
Mol Cancer ; 21(1): 196, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36221123

RESUMO

Oncolytic viruses (OVs) represent a new class of multi-modal immunotherapies for cancer, with OV-elicited antitumor immunity being key to their overall therapeutic efficacy. Currently, the clinical effectiveness of OV as monotherapy remains limited, and thus investigators have been exploring various combinations with other anti-cancer agents and demonstrated improved therapeutic efficacy. As cancer cells have evolved to alter key signaling pathways for enhanced cell proliferation, cancer progression and metastasis, these cellular and molecular changes offer promising targets for rational cancer therapy design. In this regard, key molecules in relevant signaling pathways for cancer cells or/and immune cells, such as EGFR-KRAS (e.g., KRASG12C), PI3K-AKT-mTOR, ERK-MEK, JAK-STAT, p53, PD-1-PD-L1, and epigenetic, or immune pathways (e.g., histone deacetylases, cGAS-STING) are currently under investigation and have the potential to synergize with OV to modulate the immune milieu of the tumor microenvironment (TME), thereby improving and sustaining antitumor immunity. As many small molecule modulators of these signaling pathways have been developed and have shown strong therapeutic potential, here we review key findings related to both OV-mediated immunotherapy and the utility of small molecule modulators of signaling pathways in immuno-oncology. Then, we focus on discussion of the rationales and potential strategies for combining OV with selected modulators targeting key cellular signaling pathways in cancer or/and immune cells to modulate the TME and enhance antitumor immunity and therapeutic efficacy. Finally, we provide perspectives and viewpoints on the application of novel experimental systems and technologies that can propel this exciting branch of medicine into a bright future.


Assuntos
Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Antígeno B7-H1 , Receptores ErbB , Histona Desacetilases , Humanos , Imunoterapia , Quinases de Proteína Quinase Ativadas por Mitógeno , Neoplasias/patologia , Nucleotidiltransferases , Vírus Oncolíticos/genética , Fosfatidilinositol 3-Quinases , Receptor de Morte Celular Programada 1 , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas p21(ras) , Transdução de Sinais , Serina-Treonina Quinases TOR , Proteína Supressora de Tumor p53
6.
Sci Transl Med ; 14(636): eabg8402, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35294258

RESUMO

To uncover underlying mechanisms associated with failure of indoleamine 2,3-dioxygenase 1 (IDO1) blockade in clinical trials, we conducted a pilot, window-of-opportunity clinical study in 17 patients with newly diagnosed advanced high-grade serous ovarian cancer before their standard tumor debulking surgery. Patients were treated with the IDO1 inhibitor epacadostat, and immunologic, transcriptomic, and metabolomic characterization of the tumor microenvironment was undertaken in baseline and posttreatment tumor biopsies. IDO1 inhibition resulted in efficient blockade of the kynurenine pathway of tryptophan degradation and was accompanied by a metabolic adaptation that shunted tryptophan catabolism toward the serotonin pathway. This resulted in elevated nicotinamide adenine dinucleotide (NAD+), which reduced T cell proliferation and function. Because NAD+ metabolites could be ligands for purinergic receptors, we investigated the impact of blocking purinergic receptors in the presence or absence of NAD+ on T cell proliferation and function in our mouse model. We demonstrated that A2a and A2b purinergic receptor antagonists, SCH58261 or PSB1115, respectively, rescued NAD+-mediated suppression of T cell proliferation and function. Combining IDO1 inhibition and A2a/A2b receptor blockade improved survival and boosted the antitumor immune signature in mice with IDO1 overexpressing ovarian cancer. These findings elucidate the downstream adaptive metabolic consequences of IDO1 blockade in ovarian cancers that may undermine antitumor T cell responses in the tumor microenvironment.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase , Neoplasias Ovarianas , Animais , Feminino , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Ativação Linfocitária , Camundongos , NAD , Neoplasias Ovarianas/tratamento farmacológico , Triptofano/metabolismo , Microambiente Tumoral
7.
Inorg Chem ; 61(5): 2603-2611, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35073060

RESUMO

A metal-organic polyhedron (MOP) with four paramagnetic Fe(III) centers was studied as a magnetic resonance imaging (MRI) probe. The MOP was characterized in solution by using electron paramagnetic resonance (EPR), UV-visible (UV-vis) spectroscopies, Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometry, and in the solid state with single-crystal X-ray diffraction. Water proton T1 relaxation properties were examined in solution and showed significant enhancement in the presence of human serum albumin (HSA). The r1 relaxivities in the absence and presence of HSA were 8.7 mM-1 s-1 and 21 mM-1 s-1, respectively, per molecule (2.2 mM-1 s-1 and 5.3 mM-1 s-1 per Fe) at 4.7 T, 37 °C. In vivo studies of the iron MOP show strong contrast enhancement of the blood pool even at a low dose of 0.025 mmol/kg with prolonged residence in vasculature and clearance through the intestinal tract of mice. The MOP binds strongly to serum albumin and shows comparable accumulation in a murine tumor model as compared to a covalently linked Gd-HSA contrast agent.


Assuntos
Meios de Contraste
8.
Mol Ther Oncolytics ; 23: 38-50, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34632049

RESUMO

We have demonstrated that oncolytic vaccinia virus synergizes with doxorubicin (DOX) in inducing immunogenic cell death in platinum-resistant ovarian cancer cells and increases survival in syngeneic and xenograft tumor models. However, the mechanisms underlying the virus- and doxorubicin-mediated cancer cell death remain unknown. In this study, we investigated the effect of the oncolytic virus and doxorubicin used alone or in combination on activation of the cytoplasmic transcription factor CREB3L1 (cyclic AMP [cAMP] response element-binding protein 3-like 1) in ovarian cancer cell lines and clinical specimens. We demonstrated that doxorubicin-mediated cell death in ovarian cancer cell lines was associated with nuclear translocation of CREB3L1 and that the effect was augmented by infection with oncolytic vaccinia virus or treatment with recombinant interferon (IFN)-ß used as a viral surrogate. This combination treatment was also effective in mediating nuclear translocation of CREB3L1 in cancer cells isolated from ovarian tumor biopsies at different stages of disease progression. The measurement of CREB3L1 expression in clinical specimens of ovarian cancer revealed lack of correlation with the stage of disease progression, suggesting that understanding the mechanisms of nuclear accumulation of CREB3L1 after doxorubicin treatment alone or in combination with oncolytic virotherapy may lead to the development of more effective treatment strategies against ovarian cancer.

9.
Int J Mol Sci ; 22(16)2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34445452

RESUMO

Immunotherapy initially demonstrated promising results in prostate cancer (PCa), but the modest or negative results of many recent trials highlight the need to overcome the poor immunogenicity of this cancer. The design of effective therapies for PCa is challenged by the limited understanding of the interface between PCa cells and the immune system in mediating therapeutic resistance. Prompted by our recent observations that elevated WHSC1, a histone methyltransferase known to promote progression of numerous cancers, can silence antigen processing and presentation in PCa, we performed a single-cell analysis of the intratumoral immune dynamics following in vivo pharmacological inhibition of WHSC1 in mice grafted with TRAMP C2 cells. We observed an increase in cytotoxic T and NK cells accumulation and effector function, accompanied by a parallel remodeling of the myeloid compartment, as well as abundant shifts in key ligand-receptor signaling pathways highlighting changes in cell-to-cell communication driven by WHSC1 inhibition. This comprehensive profiling of both immune and molecular changes during the course of WHSC1 blockade deepens our fundamental understanding of how anti-tumor immune responses develop and can be enhanced therapeutically for PCa.


Assuntos
Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Imunoterapia , Neoplasias da Próstata/imunologia , Microambiente Tumoral , Animais , Linhagem Celular Tumoral , Masculino , Camundongos , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/fisiopatologia , Neoplasias da Próstata/terapia
10.
J Immunother Cancer ; 8(2)2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177175

RESUMO

BACKGROUND: Immune checkpoint blockers (ICBs) have been approved by the Food and Drug Administration to be used alone in front-line therapies or in combination with other regimens for certain advanced cancers. Since ICB only works in a subset of patients and has limited efficacy in treating ovarian cancer (OVC), developing preclinical models that help to understand which patients may derive benefit from ICB would be of tremendous benefit in OVC. METHODS: Here, we generated preclinical human OVC models from freshly resected tumors, which include six patient-derived xenografts (PDXs) from six different patient tumors, three transplantable OVC PD spheroid lines (PD-sphs), and 3 cell lines (PD-CLs). We tested the therapeutic combination of anti-PD1/CTLA4 antibodies with (1) autologous tumor-associated leukocytes (TALs) on the growth of PD-sphs in a coculture system in vitro, (2) with adoptively transferred autologous peripheral blood mononuclear cells or TALs in patient-derived OVC models using partially humanized mice, NSG-HHDxSGM3 (N-HSGM3). RESULTS: We show that PD-1 and CTLA-4 dual blockade when combined with autologous TALs effectively reduced PD-sph number in a co-culture system and led to regression of established PD-CLs and PDXs in the N-HSGM3 mice. Combinatorial PD-1 and CTLA-4 blockade increased the frequency and function of tumor-specific CD8 T cells. These CD8 T cells persisted in the tumor microenvironment, exhibited memory phenotype and protected animals from tumor growth on tumor rechallenge. Gene expression analysis of tumors resistant to dual PD1/CTLA4 blockade treatment identified upregulation of antigen processing and presentation pathways and downregulation of extracellular matrix organization genes. CONCLUSIONS: These findings describe a novel platform for developing patient-derived preclinical tumor models suitable for rationally testing combinatorial ICB in the context of autologous tumor-reactive T cells. This platform can be further developed for testing additional targeted therapies relevant to OVC.


Assuntos
Imunoterapia/métodos , Neoplasias Ovarianas/tratamento farmacológico , Animais , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
11.
J Immunother Cancer ; 7(1): 189, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31315674

RESUMO

BACKGROUND: Cancer immunotherapies are emerging as promising treatment strategies for ovarian cancer patients that experience disease relapse following first line therapy. As such, identifying strategies to bolster anti-tumor immunity and limit immune suppression, while recognizing diverse patterns of tumor response to immunotherapy is critical to selecting treatment combinations that lead to durable therapeutic benefit. METHODS: Using a pre-clinical mouse model, we evaluated a heterologous prime/boost vaccine in combination with checkpoint blockade to treat metastatic intraperitoneal ovarian cancer. Vaccine-elicited CD8+ T cell responses and changes in the tumor microenvironment following treatment were analyzed and compared to treatment outcome. Kinetics of intraperitoneal tumor growth were assessed using non-invasive magnetic resonance imaging (MRI). RESULTS: Vaccine priming followed by antigen-armed oncolytic Maraba virus boosting elicited robust tumor-specific CD8+ T cell responses that improved tumor control and led to unique immunological changes in the tumor, including a signature that correlated with improved clinical outcome of ovarian cancer patients. However, this treatment was not curative and T cells in the tumor microenvironment (TME) were functionally suppressed. Combination PD-1 blockade partially overcame the adaptive resistance in the tumor observed in response to prime/boost vaccination, restoring CD8+ T cell function in the TME and enhancing the therapeutic response. Non-invasive MRI of tumors during the course of combination treatment revealed heterogeneous radiologic response patterns following treatment, including pseudo-progression, which was associated with improved tumor control prior to relapse. CONCLUSIONS: Our findings point to a key hierarchical role for PD-1 signaling and adaptive immune resistance in the ovarian TME in determining the functional fate of tumor-specific CD8+ T cells, even in the context of robust therapy mediated anti-tumor immunity, as well as the ability of multiple unique patterns of therapeutic response to result in durable tumor control.


Assuntos
Antígenos de Neoplasias/genética , Vacinas Anticâncer/administração & dosagem , Oxirredutases Intramoleculares/genética , Ovalbumina/genética , Neoplasias Ovarianas/terapia , Vesiculovirus/fisiologia , Animais , Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/imunologia , Linhagem Celular Tumoral , Terapia Combinada , Feminino , Humanos , Oxirredutases Intramoleculares/imunologia , Camundongos , Metástase Neoplásica , Vírus Oncolíticos/genética , Vírus Oncolíticos/fisiologia , Ovalbumina/imunologia , Neoplasias Ovarianas/diagnóstico por imagem , Neoplasias Ovarianas/imunologia , Resultado do Tratamento , Microambiente Tumoral , Vesiculovirus/genética , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Adv Exp Med Biol ; 1036: 213-227, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29275474

RESUMO

Immunosuppressive mechanisms within the tumor microenvironment have emerged as a major impediment to cancer immunotherapy. While a broad range of secreted factors, receptors/ligands, and cell populations have been described that contribute to the immunosuppression, the involvement of these processes in immune evasion by tumors is typically considered to be an intrinsic property of the tumor. Evidence is now emerging that the processes underlying immune suppression within the tumor are, in fact, triggered by immune attack and reflect a dynamic interplay between the tumor and the host's immune system. The term adaptive resistance has been coined to describe the induction of immune suppressive pathways in the tumor following active attack on the tumor. Adaptive resistance is a scalable process where the magnitude of immune suppression matches the magnitude of the immune attack; the net balance between suppression and attack determines the durability of the anti-tumor response and tumor outcome. In this chapter, we will examine the data supporting adaptive resistance and the opposing roles of T cells in simultaneously promoting both anti-tumor immunity and immune suppression within the tumor microenvironment. The clinical implications of adaptive resistance in the design and application of immunotherapeutic strategies is also discussed.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Imunidade Celular , Imunoterapia/métodos , Neoplasias/imunologia , Neoplasias/terapia , Animais , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/patologia , Humanos , Neoplasias/patologia
13.
J Immunol ; 193(10): 5327-37, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25320277

RESUMO

Signals mediated by the chemokine CXCL12 and its receptor CXCR4 are involved in the progression of ovarian cancer through enhancement of tumor angiogenesis and immunosuppressive networks that regulate dissemination of peritoneal metastasis and development of cancer-initiating cells (CICs). In this study, we investigated the antitumor efficacy of a CXCR4 antagonist expressed by oncolytic vaccinia virus (OVV) against an invasive variant of the murine epithelial ovarian cancer cell line ID8-T. This variant harbors a high frequency of CICs that form multilayered spheroid cells and express the hyaluronan receptor CD44, as well as stem cell factor receptor CD117 (c-kit). Using an orthotopic ID8-T tumor model, we observed that i.p. delivery of a CXCR4 antagonist-expressing OVV led to reduced metastatic spread of tumors and improved overall survival compared with oncolysis alone. Inhibition of tumor growth with the armed virus was associated with efficient killing of CICs, reduced expression of ascitic CXCL12 and vascular endothelial growth factor, and decreases in i.p. numbers of endothelial and myeloid cells, as well as plasmacytoid dendritic cells. These changes, together with reduced recruitment of T regulatory cells, were associated with higher ratios of IFN-γ(+)/IL-10(+) tumor-infiltrating T lymphocytes, as well as induction of spontaneous humoral and cellular antitumor responses. Similarly, the CXCR4 antagonist released from virally infected human CAOV2 ovarian carcinoma cells inhibited peritoneal dissemination of tumors in SCID mice, leading to improved tumor-free survival in a xenograft model. Our findings demonstrate that OVV armed with a CXCR4 antagonist represents a potent therapy for ovarian CICs with a broad antitumor repertoire.


Assuntos
Carcinoma in Situ/terapia , Quimiocina CXCL12/imunologia , Células-Tronco Neoplásicas/imunologia , Terapia Viral Oncolítica/métodos , Neoplasias Ovarianas/terapia , Neoplasias Peritoneais/prevenção & controle , Receptores CXCR4/imunologia , Animais , Carcinoma in Situ/genética , Carcinoma in Situ/imunologia , Carcinoma in Situ/patologia , Proliferação de Células , Quimiocina CXCL12/antagonistas & inibidores , Quimiocina CXCL12/genética , Células Dendríticas/imunologia , Células Dendríticas/patologia , Células Endoteliais/imunologia , Células Endoteliais/patologia , Feminino , Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Transplante de Neoplasias , Células-Tronco Neoplásicas/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/patologia , Neoplasias Peritoneais/genética , Neoplasias Peritoneais/imunologia , Neoplasias Peritoneais/secundário , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/genética , Transdução de Sinais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia , Carga Tumoral , Vaccinia virus/imunologia
14.
Mol Ther ; 22(1): 206-18, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24196579

RESUMO

Despite clear evidence of immunogenicity, cancer vaccines only provide a modest clinical benefit. To evaluate the mechanisms that limit tumor regression following vaccination, we have investigated the weak efficacy of a highly immunogenic experimental vaccine using a murine melanoma model. We discovered that the tumor adapts rapidly to the immune attack instigated by tumor-specific CD8+ T cells in the first few days following vaccination, resulting in the upregulation of a complex set of biological networks, including multiple immunosuppressive processes. This rapid adaptation acts to prevent sustained local immune attack, despite continued infiltration by increasing numbers of tumor-specific T cells. Combining vaccination with adoptive transfer of tumor-specific T cells produced complete regression of the treated tumors but did not prevent the adaptive immunosuppression. In fact, the adaptive immunosuppressive pathways were more highly induced in regressing tumors, commensurate with the enhanced level of immune attack. Examination of tumor infiltrating T-cell functionality revealed that the adaptive immunosuppression leads to a progressive loss in T-cell function, even in tumors that are regressing. These novel observations that T cells produced by therapeutic intervention can instigate a rapid adaptive immunosuppressive response within the tumor have important implications for clinical implementation of immunotherapies.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunoterapia , Neoplasias/imunologia , Neoplasias/terapia , Imunidade Adaptativa/genética , Adenovírus Humanos/genética , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/metabolismo , Vacinas Anticâncer/imunologia , Feminino , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Imunomodulação/genética , Imunomodulação/imunologia , Imunoterapia Adotiva , Interferon gama/imunologia , Interferon gama/metabolismo , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/imunologia , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Recidiva Local de Neoplasia , Neoplasias/genética , Neoplasias/patologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Carga Tumoral/genética , Carga Tumoral/imunologia , Vacinação , Vacinas Sintéticas
15.
Oncoimmunology ; 1(4): 419-431, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22754760

RESUMO

We have developed a recombinant adenovirus vaccine encoding dopachrome tautomerase (rHuAd5-hDCT) that produces robust DCT-specific immunity, but only provides modest suppression of murine melanoma. In the current study, an agonist antibody against 4-1BB was shown to enhance rHuAd5-hDCT efficacy and evoke tumor regression, but most tumors ultimately relapsed. The vaccine triggered upregulation of the immune inhibitory PD-1 signaling pathway and PD-1 blockade dramatically enhanced the rHuAd5-hDCT + anti-4-1BB strategy, resulting in complete regression of growing tumors in > 70% of recipients. The impact of the combined anti-4-1BB/anti-PD-1 treatment did not manifest as a dramatic enhancement in either the magnitude or functionality of DCT-specific tumor infiltrating lymphocytes relative to either treatment alone. Rather, a synergistic enhancement in intratumoral cytokine expression was observed, suggesting that the benefit of the combined therapy was a local event within the tumor. Global transcriptional analysis revealed immunological changes within the tumor following the curative vaccination, which extended beyond the T cell compartment. We identified an immune signature of 85 genes associated with clearance of murine melanoma that correlated with improved survival outcome in two independent cohorts of human melanoma patients. Our data reinforce the concept that successful vaccination must overcome local hurdles in the tumor microenvironment that are not manifest within the periphery. Further, tumor rejection following vaccination involves more than simply T cells. Finally, the association of our immune signature with positive survival outcome in human melanoma patients suggests that similar vaccination strategies may be promising for melanoma treatment.

16.
Integr Biol (Camb) ; 4(8): 925-36, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22777646

RESUMO

Interleukin-12 (IL12) enhances anti-tumor immunity when delivered to the tumor microenvironment. However, local immunoregulatory elements dampen the efficacy of IL12. The identity of these local mechanisms used by tumors to suppress immunosurveillance represents a key knowledge gap for improving tumor immunotherapy. From a systems perspective, local suppression of anti-tumor immunity is a closed-loop system - where system response is determined by an unknown combination of external inputs and local cellular cross-talk. Here, we recreated this closed-loop system in vitro and combined quantitative high content assays, in silico model-based inference, and a proteomic workflow to identify the biochemical cues responsible for immunosuppression. Following an induction period, the B16 melanoma cell model, a transplantable model for spontaneous malignant melanoma, inhibited the response of a T helper cell model to IL12. This paracrine effect was not explained by induction of apoptosis or creation of a cytokine sink, despite both mechanisms present within the co-culture assay. Tumor-derived Wnt-inducible signaling protein-1 (WISP-1) was identified to exert paracrine action on immune cells by inhibiting their response to IL12. Moreover, WISP-1 was expressed in vivo following intradermal challenge with B16F10 cells and was inferred to be expressed at the tumor periphery. Collectively, the data suggest that (1) biochemical cues associated with epithelial-to-mesenchymal transition can shape anti-tumor immunity through paracrine action and (2) remnants of the immunoselective pressure associated with evolution in cancer include both sculpting of tumor antigens and expression of proteins that proactively shape anti-tumor immunity.


Assuntos
Proteínas de Sinalização Intercelular CCN/metabolismo , Melanoma Experimental/imunologia , Melanoma/imunologia , Proteínas Proto-Oncogênicas/metabolismo , Animais , Anticorpos Monoclonais/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular , Citometria de Fluxo/métodos , Humanos , Sistema Imunitário , Imunossupressores/farmacologia , Interleucina-12/metabolismo , Melanoma/metabolismo , Melanoma Experimental/metabolismo , Camundongos , Fator de Transcrição STAT4/metabolismo , Transdução de Sinais , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Linfócitos T Auxiliares-Indutores/citologia , Fatores de Tempo
17.
Mol Ther ; 20(4): 860-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22186790

RESUMO

The memory CD8(+) T cell population elicited by immunization with recombinant human adenovirus serotype 5 (rHuAd5) vaccines is composed primarily of effector and effector memory cells (T(EM)) with limited polyfunctionality. In this study, we investigated whether treatment with immunomodulators could enhance and/or redistribute the CD8(+) memory population elicited by rHuAd5. Vaccination in combination with both rapamycin (to modulate differentiation) and an OX40 agonist (to enhance costimulation) increased both the quantity and polyfunctionality of the CD8(+) memory T cell population, with expansion of the T(EM) and memory precursor populations. Furthermore, this intervention enhanced protection against multiple virus challenges. Attenuation of adenovirus transgene expression was required to enable the combination rapamycin + OX40 agonist immunomodulatory treatment to further enhance skewing towards central memory formation, indicating that persistence of antigen expression ultimately limits development of this memory population following rHuAd5 immunization. These results demonstrate that during the expansion phase following adenovirus immunization, the level of mammalian target of rapamycin (mTOR) activity, the amount of costimulation and the duration of antigen availability act together to define the magnitude, phenotype, and functionality of memory CD8(+) T cells. Modulation of these factors can be used to selectively manipulate memory formation.


Assuntos
Adenoviridae/imunologia , Linfócitos T CD8-Positivos/imunologia , Receptores OX40/agonistas , Receptores OX40/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Feminino , Citometria de Fluxo , Memória Imunológica/efeitos dos fármacos , Camundongos , Ligante OX40/farmacologia , Sirolimo/farmacologia
18.
J Reprod Dev ; 57(1): 76-83, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21422735

RESUMO

Thrombospondin-1 (TSP-1) is a large extracellular matrix-associated protein that is important for normal follicular development, is rapidly modulated during follicular growth and plays important roles in cellular proliferation and angiogenesis. TSP-1 mRNA is post-transcriptionally regulated, although the underlying mechanisms are largely unknown. Insulin-like growth factor-1 is a potent signalling molecule that participates in folliculogenesis. We hypothesized that IGF-1 modulates TSP-1 expression in granulosa cells, and that such modulation requires rapid turnover of the TSP-1 mRNA and protein. Spontaneously-immortalized rat granulosa cells (SIGC) were cultured in the presence or absence of IGF-1, after which the expression and turnover of TSP-1 mRNA and protein was evaluated by western blot and quantitative PCR. RNA stability reporter constructs were prepared in which wild-type and mutated AU-rich elements from the TSP-1 3'UTR were cloned downstream of the luciferase gene in a mammalian expression vector. These were transfected into SIGC cells in order to characterize mRNA elements that regulate the stability of the TSP-1 mRNA. TSP-1 expression decreased rapidly at the mRNA and protein levels in IGF-1 treated cultures. Following 12 h of IGF-I treatment, TSP-1 protein decreased by 25% and was 73% lower than in untreated cultures. The half-life of endogenous TSP-1 mRNA in SIGC was 2.0 h. This was not changed in the presence of IGF-1, however, transcription of new TSP-1 mRNA was inhibited. Reporter mRNAs with mutated AU-rich elements demonstrated a longer half-life than mRNAs in which the wild type AU-rich elements were present. These studies reveal that IGF-1 rapidly inhibits TSP-1 expression at the protein and mRNA levels in cultured granulosa cells through apparent inhibition of TSP-1 transcription. The decrease depends on an intrinsically short half-life of TSP-1 mRNA and protein. The short mRNA half life is due, at least in part, to AU-rich elements in the 3'UTR of the TSP-1 mRNA.


Assuntos
Regulação da Expressão Gênica , Células da Granulosa/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Trombospondina 1/metabolismo , Regiões 3' não Traduzidas/genética , Animais , Sequência de Bases , Linhagem Celular Transformada , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Reporter , Células da Granulosa/efeitos dos fármacos , Meia-Vida , Mutagênese Sítio-Dirigida , Mutação , Inibidores da Síntese de Ácido Nucleico/farmacologia , Oogênese , Estabilidade de RNA/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Trombospondina 1/genética , Transcrição Gênica/efeitos dos fármacos
19.
Blood ; 117(4): 1146-55, 2011 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-21088134

RESUMO

We have recently reported that CD8(+) T-cell memory maintenance after immunization with recombinant human adenovirus type 5 (rHuAd5) is dependent upon persistent transgene expression beyond the peak of the response. In this report, we have further investigated the location and nature of the cell populations responsible for this sustained response. The draining lymph nodes were found to be important for primary expansion but not for memory maintenance, suggesting that antigen presentation through a nonlymphoid source was required. Using bone marrow chimeric mice, we determined that antigen presentation by nonhematopoietic antigen-presenting cells (APCs) was sufficient for maintenance of CD8(+) T-cell numbers. However, antigen presentation by this mechanism alone yielded a memory population that displayed alterations in phenotype, cytokine production and protective capacity, indicating that antigen presentation through both hematopoietic and nonhematopoietic APCs ultimately defines the memory CD8(+) T-cell response produced by rHuAd5. These results shed new light on the immunobiology of rHuAd5 vectors and provide evidence for a mechanism of CD8(+) T-cell expansion and memory maintenance that relies upon both hematopoietic and nonhematopoietic APCs.


Assuntos
Adenovírus Humanos/imunologia , Linfócitos T CD8-Positivos/imunologia , Imunização , Memória Imunológica/fisiologia , Vacinas Virais/imunologia , Animais , Apresentação de Antígeno/imunologia , Células Apresentadoras de Antígenos/imunologia , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Células Cultivadas , Feminino , Sistema Hematopoético/imunologia , Humanos , Imunização/métodos , Ativação Linfocitária/imunologia , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Melanoma Experimental/terapia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transplante de Neoplasias , Terapia Viral Oncolítica/métodos , Vacinas Sintéticas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...